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Greetings from early 2016! A lot has happened since the 
previous edition of the Snygglet, in April 2013. In fact, we 
have been so busy that we haven’t had time to put the news 
into a Snygglet newsletter. Until now. 

First of all, the name “Snygglet” has become an anachronism, 
because Snygg Hall is no more. See the photo of Snygg under 
deconstruction, which took most of the 2013 - 2014 academic 
year. We are in the Shineman Center, along with all the science 
departments, the Computer Science Department, and the 
new Electrical and Computer Engineering Department. 

With all those departments in one building, we are part of 
a bigger and tighter family of science related faculty and 
students — all to the good — but we miss the roominess of 
Snygg. Where in Snygg we had math faculty offices together, 
across the hall from classrooms, now the classrooms are on 
the first floor and our faculty offices, together with those 
of our colleagues in other departments, are on the second, 
third and fourth floors of Shineman. We have needed to 
be more imaginative in locating spaces where faculty and 

Letter From the Former Chair
students can get together to talk math. See the articles on 
the Summer Lunch Club and the Math Club, which meet in 
the Math Student Commons Room. 

A corresponding change over the past few years is in 
the majors of the students in our mathematics classes. A 
greater proportion are science students, including many 
who combine a mathematics major with a major in science 
or computer science or engineering. And far fewer are in 
education. In the listing of our graduates in this newsletter, 
note the decline of those in Adolescence Education, as grade 
7 – 12 teaching is now called. And more of our students take 
statistics classes, with a few each year entering graduate 
programs in statistics, usually fully funded. We have become 
a feeder school for the University of Rochester’s biostatistics 
program, with four of our graduates in the last four years 
moving to that program, all with assistantships. 

We have solutions from the last set of problems, and three 
new ones to keep you occupied.

We have had a couple retirements: Jack Narayan in December 
2013 and Lynn Carlson just in December 2015. See the article 
on Jack Narayan. We hope to have more about retiring faculty 
and new faculty with our next newsletter. And we have a new 
department chair. After five years in the position, Christopher 
Baltus happily turns over the reins to Scott Preston. 

— Christopher Baltus
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Mathematics looks better and better as a path to a satisfying 
career.

From The New York Times, August 9, 2015 

ROHNERT PARK, Calif. — In a stark about-face from just 
a few years ago, school districts have gone from handing 
out pink slips to scrambling to hire teachers.

Across the country, districts are struggling with shortages 
of teachers, particularly in math, science and special 
education — a result of the layoffs of the recession years 
combined with an improving economy in which fewer 
people are training to be teachers.

And from CareerCast.com 

If you love crunching numbers and managing spread-
sheets, you’re in luck. Jobs in mathematics rank among 
the nation’s best for 2015. These positions are financially 
lucrative, offer abundant opportunities for advancement 

The student run Math Club was especially active in 
2014 - 2015 under President Kenny Roffo, Vice-President 
Jonathan McKibbin, Secretary Joanna McKinney, and 
Treasurer Harry Kandaras. 

The club took over the Mathematics Student Commons 
Room, Shineman 373, on many afternoons. In the fall, 
Professor Justin Ryan ran a late afternoon seminar on Lie 
groups. On spring afternoons, club members held help 
sessions for calculus students. 

The club ran the First Annual “Math Club Fun Night” 
on March 10. This early celebration of Pi Day included a  
variety of pies, from cherry to pumpkin to pizza, some lively 
rounds of “Set” — the clear champion was first year faculty 
member Bonita Graham, and Math Jeopardy, created and 
programmed by Ken Roffo and Jonathan McKibben. 

A number of club members went to the April 2015  
meeting of the Seaway Section of the Mathematical 
Association of America, at Colgate University. In the Fall,  
the Math Club visited to the MAA Seaway Sectional 
Conference in Alfred, NY. Members of club gave presen-

Math Career Outlook

Math Club Goes “Rubik”

and, most surprisingly, often deviate from common 
perceptions about math. 

The site emphasizes that one also needs to communicate 
well and work in a team. They selected the best jobs based 
on measures of “Environment, Income, Outlook, and Stress.”

“To a large measure, the data used to evaluate each job 
comes from the Bureau of Labor Statistics (BLS), a part of 
the U.S. Department of Labor.” Here are their top eight:

1. Actuary

2. Audiologist

3. Mathematician  

4. Statistician

5. Biomedical Engineer  

6. Data Scientist

7. Dental Hygienist

8. Software Engineer

tations at each of these. (Kenny Roffo and Julia Martin 
in the Spring 2015; Amy Hanahan and Julia Martin in the  
Fall 2015)

The running theme of the year was Rubik’s Cube. The 
dexterity and mastery of the cube of some of our students 
was amazing to watch! Ken Roffo added to his remarkable 
collection of cube. See the photo. And he did some solid 
mathematics, proving that the group of moves on the 3-by-
3-by-3 cube is the group generated by five independent 
quarter turns of a face. In his Capstone paper, Jonathan 
McKibbin studied the transformation groups of some 
stranger cubes, such as the 2-by-1-by-1 “cube.” 

Ken Roffo’s collection of Rubik’s Cubes.
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In the summer of 2014, Professors Preston, Elmer, and Wilcox 
came together to create Lunch Club. In June and July, math 
faculty and students would gather once a week over lunch 
to discuss math articles. “Lunch Clubbers” rotated hosting 
duties; the host would assign an article and several thought-
provoking questions, members would spend a week reading 
and pondering, and then the host would lead the Lunch Club 
discussion. 

In 2014, Lunch Club pondered topics as far-ranging as 
evaluating conservation techniques through graph theory, 
n-dimensional tic-tac-toe, knot theory, and penny games. 
The fun continued into the semester, with Professor Elmer 
giving a seminar in fall semester generalizing the penny 
game to unfair pennies and then Visiting Assistant Professor 
Ryan McCulloch gave a seminar in spring semester giving 
solutions to combinatorial problems associated with the 
generalized 3-penny game.

The 2015 version of Lunch Club read about card tricks and 
group theory, the upper half plane model of hyperbolic 
geometry, the history and physical properties of the cycloid 
function, the game sprouts, and polyominoes. New members 
are welcome! If you’re interested in keeping up with our 
readings, contact Professor Wilcox to be added to the Lunch 
Club email list.

Here are a couple of problems associated with some of our 
readings:

1. Given two points A = (x1, y1) and B = (x2, y2) with yi > 0 
for i = 1,2. Show that there is a circle through A and B with 
its center on the x-axis. This is a crucial step in proving that 
through any two “points” in the upper half plane model of 
hyperbolic geometry there is a unique “line” through the 
two points.

2. A polyomino is a polygon created by gluing sides of squares 
together; a domino is a polyomino because a domino is two 

Lunch Club
squares glued together. In polyomino folding, there are five 
legal moves:
a. fold along a square’s edge,
b. fold along the diagonal of a square,
c. fold along the line segment that connects midpoints of 
adjacent sides (i.e., folding a corner of the square so that the 
vertex is now overlapping the “center” of the square),
d. cut along the line segment that connects midpoints of 
adjacent sides (provided that the corner of the square can 
remain adjacent to another square and not float off into 
space), and
e. cut from a square’s vertex to the midpoint of an adjacent 
side.

Use the legal moves to fold the given polyomino to create a 
smaller version of the polyomino where there are now two 
layers of paper.

(i) A 5-omino in the shape of an X.
(ii) A 6-omino in the shape of a staircase.
(iii) A 13-omino in the shape of a doughnut.

(HINTS: The 5-omino can be done with several iterations of types 
(a), (b), and (c) but only 0 moves of type (d) and 4 moves of type 
(e). The 7-omino can be done with several (a)s, (b)s, and (c)s but 0 
moves of type (d) and 2 moves of type (e). The 13-omino “doughnut” 
is a bit more of a challenge (That’s an understatement!) and you 
might need 8 moves of type (e) and 2 moves of type (d) – it’s the 
only one of these three polyominoes that needs to be tackled with 
this type of move.)

Here’s how to do a 4-omino in the shape of a square:

For printable templates of the polyominoes, as well as some 
solutions and diagrams of the legal moves, turn to Professor 
Wilcox’s webpage:
https://sites.google.com/a/oswego.edu/wilcox/

(HINTS:	The	5-omino	can	be	done	with	several	iterations	of	types	(a),	(b),	and	(c)	but	only	
0	moves	of	type	(d)	and	4	moves	of	type	(e).	 	The	7-omino	can	be	done	with	several	(a)s,	
(b)s,	and	(c)s	but	0	moves	of	type	(d)	and	2	moves	of	type	(e).		The	13-omino	“doughnut”	is	
a	bit	more	of	a	challenge	(That’s	an	understatement!)	and	you	might	need	8	moves	of	type	
(e)	and	2	moves	of	type	(d)	–	it’s	the	only	one	of	these	three	polyominoes	that	needs	to	be	
tackled	with	this	type	of	move.)	
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A 4-omino configured 
like a square.

Fold along the diagonal 
of each square.
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square!
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An x-shaped 
5-omino.

A staircase-shaped 
6-omino.

A 13-omino shaped like a donut 
with 2 holes!

Professor Mark Elmer and Max Robertson.
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1. Three given segments may or may not serve as sides of a 
triangle, depending on their lengths. 

Suppose a stick is broken in two places selected at random. 
What is the probability that the resulting three pieces form a 
triangle if 

a.  After the first break, the longer piece is broken at a 
randomly selected spot?

OR

b. The two breaks are independently selected? 

2. (Mark Elmer) Since a right triangle with legs a and b is half 
the rectangle with sides a and b, its area is ab/2.  
For other triangles, if we limit ourselves to adding areas of 
right triangles, we can quickly find the area of a triangle 
when an altitude stays inside a triangle.

But can you derive the area 
formula when an altitude is 
outside the triangle? 

You will need to add an 
infinite series of right 
triangle areas.

We have placed vertex A 
at the origin and C on the 
positive x-axis. 

Show that, by adding areas of the infinite number of right 
triangles that form, we arrive at the correct area. 

3. The Car Parking Problem. I (Baltus, not the creator of the 
problem) presented this problem to students in September 
2014. At least one student, Chaskin Saroff, correctly solved it.  

A parking lot consists of 16 spaces in a line. After 12 cars 
have, at random, occupied 12 places, Maxine arrives with a 
wide vehicle that requires two consecutive spaces. What is 
the probability that she will find the two consecutive spaces 
to park her vehicle? 

Jack Narayan retired in December 2013, 
after 43 years teaching at SUNY Oswego

Jack is from Guyana, where he began 
teaching in 1959. Do the arithmetic: 
that makes for more than a half-century 
span of teaching. Jack began in Oswego 
as an assistant professor in 1970, after 
completing his PhD at Lehigh. He quickly 
advanced through the academic ranks, 
achieving associate professor in 1976, full 
professor in 1984, and the singular honor of 

Distinguished Teaching Professor in 1988. He also was awarded, 
in 1981, the Chancellor’s Award for Excellence in Teaching. 

At the retirement dinner, in October 2013, Master of Ceremonies 
Mark Elmer identified some of the qualities to admire in Jack 
Narayan: “He is smart. He is funny. He works very hard, and he 
works well with others. He shares his knowledge and experience. 
He is a family man with a wonderful and talented family. Jack 
is a phenomenal teacher. He is also very, very fit. I smile when I 
think about finishing a 25-mile bike ride along with Jack, John 
Daly, Paul Dussere, and Sally Dussere. With about one half mile 
to go Jack demonstrated some yoga positions to me. He did 
this while still riding his bicycle!” 

Attending the retirement dinner were Jack’s sons Darren and 
Dwayne, and many retired colleagues; notes of congratulations 
and reminiscence came in from Jack’s third son, Drew, and 
former chair Phil Downum, Jack’s neighbor for thirty years. 

In addition to his memorable teaching, Jack built a distinguished 
list of publications, notable not just for its length but for its 
breadth. One can trace both Jack’s interests and his collaborators 
in a selection from his publications, from 1970 to 2008: 

1970 with Gilbert Stengle, his Lehigh thesis advisor: “Uniform 
asymptotic splitting of linear differential equations,” in the 
Springer Lecture Notes volume Analytic Theory of Differential 
Equations.
1988 with John Considine, of Lemoyne College, “Assessment 
of the Impact of Fare Increases in a Transit System by Using 
Intervention Analysis,” the Outstanding Paper of the Marketing 
Research Track, 1988 Conference of the Southern Marketing 
Association.
1989 with Craig Graci and Randy Odendahl, of the Oswego 
Department of Computer Science, “Bunny Numerics: A Number 
Theory Microworld,” in the Springer publication Computers and 
Mathematics. 
2002 with his son Darren Narayan, professor at Rochester 
Institute of Technology, “Fibonacci Determinants,” in the 
College Mathematics Journal.
2008 “Across 50 Years of Teaching,” the invited Randolph 
Lecture at the Fall meeting of the Seaway Section of the 
Mathematical Association of America.

Postscript: A few days after Fall semester 2013, Jack’s final 
semester, Jack Narayan was named Chief Academic Officer of 
WebAssign. Retirement was short-lived! 

New Snyglett 
Problems

Jack Narayan Retires
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1. My son’s Masterlock combination (three distinct integers 
from 0 through 39) is an arithmetic sequence of 2-digit 
primes: a, a+ d, a + 2d. 

How many such combinations are possible? 

Solution: Two sequences. First, a cannot be a multiple of 2 
or 3, since it is prime. d must be a multiple of 2 so that a + d 
is odd and d must be a multiple of 3 since otherwise exactly 
one of a, a+ d, a + 2d would be a multiple of 3. So d is 6 or 12. 
Then by trying all possibilities, we find just two: { 11, 17, 23} 
and {17, 23, 29}. 

2. [From Jeremy Berquist, who posts the Problem of the 
Week. This was the first problem of the Spring semester.]

If three distinct integers are selected at random from { 0, 1, 
2, . . . , N}, what is the probability the three numbers, in some 
order, form an arithmetic sequence: 

{ a, a+ d, a + 2d}?

[You may first want a rule for odd N and a rule for even N. 
But Jeremy would like just one rule, involving the greatest 
integer function.]

Solution: [Jeremy Berquist]
Note that a three-number arithmetic sequence is determined 
by its first two or its last two numbers. 

Case 1: N = 2m is even. There are                        ways to select

three different numbers from the set { 0, 1, 2, . . . , N}. Three 
numbers in arithmetic progression can be specified by 
selecting the first and third numbers, both odd or both even. 
For two evens, we select two numbers from { 0, 2, 4, . . . , 
2m}: 

-- in     ways. 

For two odds, we select two numbers from { 1, 3, . . . , 2m - 1} 

-- in             ways.

So the probability that the three numbers selected form an 
arithmetic sequence is

    which simplifies to

Snygglet Problem Solutions (For problems from the 2013 issue) 

Case 2: N = 2m – 1 is odd.

There are                  ways to select three different numbers 

from the set { 0, 1, 2, . . . , N}. Thinking as in Case 1, above, 

there are        ways to form an arithmetic sequence 

from { 0, 1, 2, . . . , N}. 

So the probability is 

In both cases the probability is 

3. [An oldie-but-goody.] A worm crawls at a steady speed 
of 1 inch per hour, starting from one end, along a 50 inch 
rubber band. To frustrate the poor worm, at each hour the 
band is suddenly lengthened by 1 inch.

Does the worm ever reach the other end? 

Yes. Consider the fraction of the original band that the worm 
traverses each hour:

Adding them we get

This is a tail of the harmonic series, which is known to 
diverge to infinity. So eventually, the sum will pass 1, meaning 
that the worm has reached the end. 

We also see that the sum through term              exceeds,

        so the worm will reach

the end of the band in less than 86 hours. 

Snygglet	Problem	Solutions	(For	problems	from	the	2013	issue)		
	
1.		My	son’s	Masterlock	combination	(three	distinct	integers	from	0	through	39)	is	
an	arithmetic	sequence	of	2-digit	primes:		a,		a+	d,		a	+	2d.			
How	many	such	combinations	are	possible?			
	
Solution:	Two	sequences.		First,		a		cannot	be	a	multiple	of		2		or	3,	since	it	is	prime.				
d		must	be	a	multiple	of		2	so	that		a	+	d	is	odd	and	d		must	be	a	multiple	of		3	since	
otherwise	exactly	one	of		a,		a+	d,		a	+	2d		would	be	a	multiple	of	3.		So		d		is		6	or	12.		
Then	by	trying	all	possibilities,	we	find	just	two:		{	11,	17,	23}	and		{17,	23,	29}.			
	
2.		[From	Jeremy	Berquist,	who	posts	the	Problem	of	the	Week.		This	was	the	first	
problem	of	the	Spring	semester.]	
If	three	distinct	integers	are	selected	at	random	from		{	0,	1,	2,	.	.	.	,	N},	what	is	the	
probability	the	three	numbers,	in	some	order,	form	an	arithmetic	sequence:			
{	a,		a+	d,		a	+	2d}?	
[You	may	first	want	a	rule	for		odd	N		and	a	rule	for	even	N.		But	Jeremy	would	like	
just	one	rule,	involving	the	greatest	integer	function.]	
	
Solution	[Jeremy	Berquist]	
Note	that	a	three-number	arithmetic	sequence	is	determined	by	its	first	two	or	its	
last	two	numbers.			
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3.		[An	oldie-but-goody.]		A	worm	crawls	at	a	steady	speed	of		1	inch	per	hour,	
starting	from	one	end,	along	a	50	inch	rubber	band.		To	frustrate	the	poor	worm,	at	
each	hour	the	band	is	suddenly	lengthened	by	1	inch.	
Does	the	worm	ever	reach	the	other	end?			
	
Yes.		Consider	the	fraction	of	the	original	band	that	the	worm	traverses	each	hour:	
Adding	them	we	get	 150+

1
51+

1
52+

1
53+… 	.	This	is	a	tail	of	the	harmonic	

series,	which	is	known	to	diverge	to	infinity.	So	eventually,	the	sum	will	pass	1,	
meaning	that	the	worm	has	reached	the	end.			
We	also	see	that	the	sum	through	term	 1135 		exceeds		

1
t50

136
∫ dt = ln136− ln50 >1.0 ,	so	the	worm	will	reach	the	end	of	the	band	in	less	
than	86	hours.			
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Math Club members 

(Left) Joanna Mckinney, 
Jon McKibben, Alex 
Jansing, Ken Roffo  
and Nina House.

(Right) 2015 graduate 
Chaskin Saroff.

6

SUNY Oswego’s Richard S. Shineman Center 

for Science, Engineering and Innovation,  

which opened in fall 2013,

Michael Dempsey, Jackie Maguire, Dan MannixNew Chair, Professor Scott Preston 

and  Kirsten Parsons, BA 2015
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Demolition of Snygg — 2014

Erika Wilson, from Ontario, N.Y. —  

graduated in May 2015 with a major in applied 

mathematics and a minor in applied statistics.

LUNCH CLUB

(Left) Amy Hannahan 

and Professor Elizabeth Wilcox.

(Right) Julia Martin.
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May 2013 Graduates 
Shannon Blazavich: Endicott, NY, Childhood Ed (Mathematics Concentrate) 
Adam Clute: Johnstown, NY 
Mathematics BA and Adolescence Ed (Mathematics) 
Fenton Caster: Savannah, NY, Applied Mathematical Economics
Jessica Dickquist: Minetto, NY, Mathematics BA
Michael Dempsey: Bloomingburg, NY  
Mathematics BA and Adolescence Ed (Mathematics)
Michael Edinger: Baldwinsville, NY 
Applied Mathematics BS and Applied Statistics minor
Joseph Fear: Oswego, NY, Mathematics BA 
Ashleigh Gerstner: Walcott, NY, Mathematics BA
Christi Gregory: Lyons Falls, NY, Adolescence Ed (Mathematics)
Nathan Hemmes: Poughquag, NY, Applied Mathematics BS 
Kayla Hoffman: Central Square, NY, Adolescence Ed (Mathematics)
Bryan Jones: Ontario, NY, Childhood Ed (Mathematics Concentrate)
Kellie Kubala: Amherst, NY, Childhood Ed (Mathematics Concentrate)
Jeremy Lasda: Northport, NY  
Mathematics BA and Adolescence Ed (Mathematics)
Jackie Maguire: Holland, NY  
Mathematics BA and Adolescence Ed (Mathematics)
Daniel Mannix: Brewster, NY  
Mathematics BA and Adolescence Ed (Mathematics)
Thomas Powell: Hicksville, NY, Applied Mathematical Economics
Luis E. Rodriguez: Colon, Guatamala, Mathematics BA
Stefan Scott: Mountainville, NY, Applied Mathematical Economics
Matthew Stewart: Oswego, NY, Childhood Ed (Mathematics Concentrate)
Rebecca Tango: Walden, NY, Mathematics BA
Maria Williams: Rochester, NY, Childhood Ed (Mathematics Concentrate) 
Matthew Worden: Vestal, NY, Applied Mathematics BS

December 2013 Graduates 
Katlyn Carnachan: Norwich, NY, Childhood Ed (Mathematics Concentrate) 
Stephanie Ciesla: Oswego, NY, Childhood Ed (Mathematics Concentrate) 
Melissa Degeronimo: Shoreham, NY, Childhood Ed (Mathematics Concentrate) 
Kaitlyn Lefeve: Kirkville, NY  
Applied Mathematics BS and Applied Statistics minor
Adam Lesh: Syracuse, NY Mathematics BA and Adolescence Ed (Mathematics)
Ethan Mitchell: West Hampton, NY  
Mathematics BA and Adolescence Ed (Mathematics)
Rebecca Rappold: Rochester, NY, Childhood Ed (Mathematics Concentrate) 
Rachel Rhynders: Syracuse, NY  
Mathematics BA and Adolescence Ed (Mathematics)
Bryan Rose: Oneida, NY  
Mathematics BA and Adolescence Ed (Mathematics) 
Brittany Watkins: Constableville, NY, Childhood Ed (Mathematics Concentrate)

May and August 2014
Matthew Brooks: Utica, NY, Applied Mathematical Economics
Kyle Buscaglia: Akron, NY, Mathematics BA
Sean Crowder: Greenwich, NY, Mathematics BA
Samuel Disalvo: Batavia, NY, Mathematics BA
Tara Fleming: Oswego, NY  
Applied Mathematical Economics, Applied Statistics minor
Jacob Gallagher: Apalachin, NY, Applied Mathematic BS
Joseph J. Pike: Rochester, NYChildhood Ed (Mathematics Concentrate) 
Ashley Collins: Binghamton, NY  
Mathematics BA and Adolescence Ed (Mathematics) 
Caitlin Dabkowski: East Northport, NY  
Mathematics BA and Adolescence Ed (Mathematics)
Sara Herbrand: Rochester, NY, Childhood Ed (Mathematics Concentrate) 

Math Graduates: 2013 - 2015
Chelsea Hunt: Brockport, NY  
Mathematics BA and Adolescence Ed (Mathematics) 
Michelle Mariano: Mathematics BA, Oswego, NY
James Mazzarano: Mathematics BA, Mohegan Lake, NY
Laura Murtha: Central Square, NY  
Mathematics BA and Adolescence Ed (Mathematics)
Courtney Norell: Franklin Square, NY  
Mathematics BA and Adolescence Ed (Mathematics)
Morgan O’Hara: Baldinsville, NY, Mathemtics BA 
Nicholas Powers: Mexico, NY, Mathematics BA
Rebecca Rappold: Rochester, NY, Childhood Ed (Mathematics Concentrate) 
Keegan Urtz: Oneida, NY, Mathematics BA
Brittany Watkins: Constableville, NY, Childhood Ed (Mathematics Concentrate) 
Nicole Whittam: Webster, NY, Childhood Ed (Mathematics Concentrate) 
Ben Valentino: Mexico NY, Applied Mathematics BS

Dec 2014 / May 2015 / August 2015
Amanda Austin: Massapequa Park, NY, BA
Daniel Batchelder: Salem, NY, Childhood Ed Math Concentrate
Jillian Bergemann: Baldwinsville, NY, Childhood Ed Math Concentrate
Kelly Brinkel: Hamburg, NY, Stat minor
Laura Critelli: Clay, NY, grad school in Oswego, BA plus ADO
Jacquelyne Fancett: Waterville, NY, Applied Mathematical Economics
Chelsea Fearon: Union Springs, NY, BA plus ADO
Matthew DeGilio: Syracuse, NY, BA plus ADO
Amanda Heberger: Liverpool, NY, Childhood Ed Math Concentrate
Alexander Jansing: Clinton, NY, BS
Ashley Johnston: Liverpool, NY, Childhood Ed Math Concentrate
Sanjeev Kumar: Syracuse, NY, BS
Miguel Lara: Oswego, NY, BA
Daichi Mae: Sopporo, Japan, BA
Michael Mahaney: Rochester, NY, Applied Math Econ, Applied Stat minor
John Mackie: Bellport, NY, Childhood Ed Math Concentrate
Jonathan McKibbin: Patchogue, NY, BA
Ashley Michlovitch: Liverpool, NY, BA plus ADO, grad school in math ed
Benjamin Morrill: Webster, NY, Stat minor
Kailea Nelson: (Dec.) Ontario, NY, Childhood ed math concentrate
Thomas Perry: (Aug.) Syracuse, NY, BA plus ADO
Tracie Condi: Cayuta, NY, BS
David Randal: (Dec.) Ontario, NY, Childhood Ed Math Concentrate
Alexander Ross: Red Hook, NY, Stat minor
Chaskin Saroff: Queensbury, NY, BS
Christopher Schroth: Syracuse, NY, BA
Joshua Stuper: East Syracuse, NY, BA
Lauren Sutter: Newburgh, NY, Statistics minor
Timothy Van Hine: Apalachin, NY, Statistics Minor
Erika Wilson: Ontario, NY, BS, Applied Stat minor
Tyler Worzel: Glen Spey, NY, BS, Applied Stat minor
Andrew Urtz: (Dec.) Oneida, NY, BS
Timothy Van Hine: Apalachin, NY, Stat minor
Eyub Yegen: Turkey, Applied Math Econ and Applied Stat minor, to U of 
Toronto, Management

Dec 2015
Kirsten Parsons: Oswego, NY, BA
Jeremy Pietruch: Marcy, NY, BA and ADO
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