
EULER: CONTINUED FRACTIONS AND DIVERGENT SERIES (AND NICHOLAS
BERNOULLI)

CHRISTOPHER BALTUS

ABSTRACT. Euler developed the theory of continued fractions in the 1730’s, driven in part by com-
putational interests. It is perhaps a surprise that the association of a given series with a continued
fraction first received full development in the case of the divergent series1−x+2x

2
−2·3x

3
+2·3·

4x
4
− . . . . This connection was born during Euler’s correspondence with Nicholas Bernoulli from

1742 to 1745. While he had already used divergent series to find values of convergent numerical
series, in his letters with Bernoulli his concepts and practices are exposed, if not developed.

Euler a développé la théorie de fractions continues au cours des années 1730, conduit partielle-
ment par les intérêts quantificatifs. C’est peut-être une surprise que l’association d’une série donnée
avec une fraction continue a d’abord reçu le développement complet en cas de la série divergente
1− x + 2x

2
− 2 · 3x

3
+ 2 · 3 · 4x

4 etc. Cette connexion est née pendant la correspondance d’Euler
avec Nicholas Bernoulli à partir de 1742 à 1745. Pendant qu’Euler avait déjà utilisé la série diver-
gente pour trouver des valeurs de série numérique convergente, dans ses lettres avec Bernoulli ses
concepts et pratiques sont exposés, si non développé.

1. CONTINUED FRACTIONS IN THE 1730’S

Before Euler, continued fractions appeared in scattered examples, with the only coher-
ent development amounting to a couple pages inArithmetica Infinitorum[22], 1656, of
John Wallis (1616-1703). That same work includes an intriguing example, discovered by
William Brounker, later repeated in Wallis’sAlgebra[23, p 356][Latin edition 1693]. It is
a continued fraction for the ratio of a square to its inscribed circle:

(1) 1 +
1

2 +
9

2 +
25

2 +
49

2 + etc.

Euler’s first work with continued fractions, it appears, involved the separable Riccati equa-
tion. His continued fraction appeared in his letter to Christian Goldbach of 25 November
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1731. The separable Riccati equation

(2) adq = q2dp − dp

could, by settingp = (2n + 1)x
1

2n+1 [20] [1], be transformed to

(3) ady = y2dx − x−
4n

2n+1 dx.

He then found, leaving just meager hints of the trail he followed [See [19]],

(4) q = −
a

p
+

1

−3a
p

+
1

−5a
p

+
1

−7a
p

+
1

etc. etc. etc.+
1

−2(n−1)a
p

+ 1

x
2n

2n+1 y

.

This substitution holds ifn is a positive integer.

The continued fraction reappeared in “De fractionibus continuis dissertatio,” [8] of 1737.
The separable Riccati equation

adq + q2dp = dp

yields e
2p

a = 1 + 2
q − 1

, into which the continued fraction (4), witha replaced by−a,
can be incorporated. Withs set equal toa

2p
, we arrive at

(5) e
1

s = 1 +
2

2s − 1 +
1

6s +
1

10s +
1

14s + etc.

.

(5) converges for positives. The full continued fraction givese
1

s as a function ofs written
as an infinite continued fraction, the first such function representation. But it was an
isolated case, a function emerging as the solution of a differential equation.

[8], of 1737, and “De fractionibus continuis observationes” of 1739 [10] constitute a con-
tinued fraction primer. Euler opened [8] by noting that continued fractions, although less
used than infinite series and products, are quite well suitedto approximate computation.
In [8], Euler introduced continued fractions fore and related expressions by applying
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repeated division to the decimal expansion until a pattern emerged. This all suggests a
computational motivation for Euler’s early work with continued fractions. Only then did
he turn to justification: he showed that a continued fractionderived from (5), written as a
ratio of series, satisfies the separable differential equation from which it originated.

Euler began [10] by developing formulas that produced a continued fraction corresponding
to a given series. Following [10] and [8], the continued fraction

(6) a +
α

b +
β

c +
γ

d +
δ

e + etc.

.

hasconvergents

(7)
1

0
,

A

1
,

B

P
,

C

Q
,

D

R
, etc. where A = a, B = α · 1 + bA,

C = βA + cB, D = γB + dC, . . . , and

P = b, Q = β · 1 + cP, R = γP + dQ, . . . .

[The recurrence formula is found in Wallis’s [22, Prop 191].]

Then any convergent can be written as a finite series, as, for example,

(8)
D

R
=

A

1
+ (

B

P
−

A

1
) + (

C

Q
−

B

P
) + (

D

R
−

C

Q
) =

A

1
+

B · 1 − AP

1 · P
+

CP − BQ

P · Q
+

DQ − CR

R · Q
=

a

1
+

α

1 · P
−

αβ

P · Q
+

αβγ

R · Q
.

The last line of (8) follows from a property not proved in [10]but later proved by a loose
induction argument in [13] and [15]. We can check directly that, for example,

(9) B · 1 − AP = α; CP − BQ = (βA + cB)P − B(β · 1 + cP )

= β(AP − B · 1) + cBP − BcP = −αβ, etc.

From (8) and (9), for a given seriesa1

b1
+ a2

b2
+ a3

b3
+. . . , corresponding values (not unique)

for a, P, Q, R, . . . , b, c, d, . . . can be found, and from theseα, β, γ, . . . , giving the
continued fraction.
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Euler noted in Articles 5 and 6 of [8] that whena, b, c, . . . andα, β, γ, . . . are all positive,
then the first, third, fifth convergents, etc., namely,

a, a +
α

b +
β

c

, a +
α

b +
β

c +
γ

d +
δ

e

,

form an increasing sequence of numbers all less than the decreasing sequence of conver-
gents of even order. This seems to have been sufficient reasonfor Euler to conclude “it
will be possible to approach the true value of the continued fraction as closely as desired.”

The first applications of Euler’s new procedure was the continued fraction development of
a sequence of definite integrals

∫
1

1+xm dx where the integration is understood to be from
x = 0 to x = 1. The integrand is expanded in a power series, integrated termby term,
and then transformed by the new procedure into a continued fraction. A notable example
is the casem = 2, giving π

4
. Where in [8] Article 4, Brouncker’s continued fraction (1)

for 4
π

is found by a complicated argument attributed to Wallis, in [10] we have a direct
development of the continued fraction from Leibniz’s series

π

4
= 1 −

1

3
+

1

5
−

1

7
+ . . . .

This passage from an integral or ratio of integrals to a powerseries to a continued fraction
is perhaps the most typical strategy for Euler. Giovanni Ferraro [17] sees the continued
fraction link as essential to Euler’s understanding of divergent series. After several exam-
ples of the integral to series to continued fraction passage, he wrote

series were conceived as a mere combinatorial instrument relating contin-
ued fractions and integrals. It thus was of no importance if the series by
themselves had a meaning as quantities (i.e., they were convergent) or not.
Moreover, even if the series had no sum in the ordinary sense,they could
however obtain a meaning merely from the fact that they related two ex-
pressions of the same quantity. More specifically: if the quantity A was
expressed by the integralI and by the fractionF, and one could transform
I into F by the seriesS, then it seemed obvious that the seriesS also rep-
resented the quantityA. [17, p 89]
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2. DIVERGENT SERIES IN THE1730’S

18th century mathematicians understood in practice the meaning of a convergent series.
Leibniz, for example, wrote to Nicholas Bernoulli (1687-1759) in 1713 that a series was
advergent−− his word for “convergent”−− if “it could be continued so that it differed
from some finite real quantity by less than any given quantity.” [3, p 370]

Euler used series without regard to their convergence in several papers of the 1730’s. Not
that he reached false conclusions, but he invoked principles which may not hold for diver-
gent or conditionally convergent series. See[7], of 1734. In [9], of 1737, Euler found

1

3
+

1

7
+

1

8
+

1

15
+

1

24
+ . . . =

∑
m>1,n>1

1

mn − 1
= 1.

Euler’s proof began with the divergent seriesx = 1 + 1
2

+ 1
3

+ 1
4

+ 1
5

+ . . . . Rearrang-
ing,

x = 1 + [
1

2
+

1

4
+

1

8
+

1

16
+ . . .] + [

1

3
+

1

9
+

1

27
+

1

81
+ . . .] + [

1

5
+

1

25
+

1

125
+ . . .]+

[
1

6
+

1

36
+ . . .] + [

1

7
+

1

49
+ . . .] + [

1

10
+

1

100
+ . . .] . . . , and so then

x = 1+1+ 1
2
+ 1

4
+ 1

5
+ 1

6
+ 1

9
+ . . . . Cancellation gives 1 = 1

3
+ 1

7
+ 1

8
+ 1

15
+ 1

24
+ . . . .

A rigorous proof can be given. LetSk denote the partial sum1 + 1
2
+ 1

3
+ 1

4
+ 1

5
+ . . . + 1

k
,

let T be the set of fractions of form 1
mn

−1
, m, n ≥ 2, and letTk denote the sum of terms

of T which are greater than or equal to1
k

: 1
3

+ 1
7

+ 1
8

+ 1
15

+ . . . + 1
j
.

Then, rearranging,

Sk = 1 + [
1

2
+

1

4
+

1

8
+

1

16
+ . . .] + [

1

3
+

1

9
+

1

27
+

1

81
+ . . .] + [

1

5
+

1

25
+

1

125
+ . . .]+

[
1

6
+

1

36
+ . . .] + [

1

7
+

1

49
+ . . .] + [

1

10
+

1

100
+ . . .] . . . ,

where the sums are finite. If the geometric series are all continued to infinity, we get:

Sk < 1 + 1 +
1

2
+

1

4
+

1

5
+

1

6
+

1

9
+ . . . +

1

j
,

wherej ≥ k . Cancellation givesTk < 1, so limk→∞
Tk = L ≤ 1.

On the other hand,Sk − Tk = 1 + 1
2

+ 1
4

+ 1
5

+ 1
6

+ 1
9

+ . . . + 1
k

(where, for simplicity, we
suppose1

k
/∈ T and thatk 6= nq for any integerq greater than 1) =

[
1

2
+

1

4
+

1

8
+

1

16
+ . . .] + [

1

3
+

1

9
+

1

27
+

1

81
+ . . .] + [

1

5
+

1

25
+

1

125
+ . . .] + . . . +

1

k
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(These geometric series are infinite.)

= Sk−1+[
1

2l
+

1

2l+1
+

1

2l+2
+. . .]+[

1

3m
+

1

3m+1
+

1

3m+2
+. . .]+[

1

5n
+

1

5n+1
+

1

5n+2
+. . .]+. . .

where2l, 3m, 5n, etc, are all greater thank, andl, m, n, etc. are all greater than 1.

Then[ 1
2l + 1

2l+1 + 1
2l+2 + . . .] = 1

2l
1

1− 1

2

≤ 2
2l
−1

and, in general, 1
jm

1
1− 1

j

≤ 2
jm

−1
whenj ≥ 2

andm ≥ 2. Note that 1
2m

−1
, 1

3n
−1

, etc. will be distinct elements ofT, all ≤ 1
k
.

Let positiveǫ be given. Since1
3

+ 1
7

+ 1
8

+ 1
15

+ 1
24

+ . . . converges, there isk so that the
sum of the elements ofT which are≤ 1

k
is≤ ǫ

2
. For such ak, then,

Sk − Tk < Sk − 1 +
2

2l − 1
+

2

3m − 1
+

2

5n − 1
+ . . . < Sk − 1 + ǫ.

Therefore,Tk > 1 − ǫ, completing the argument that the sum is 1. [See also [2].]

3. CORRESONDENCE WITHNICHOLAS BERNOULLI, 1742 - 1745

Nicholas Bernoulli (1687 - 1759) had written to Leibniz on 7 April 1713 that the binomial
expansion of(1−x)−

1

2 = 1+ 1
2
x+ 1

2
3
4
x2+ 1

2
3
4

5
6
x3 + . . . , although divergent when|x| > 1,

still had a value. Bernoulli said that the remainder term, giving the quantity by which a
partial sum differs from the value of the entire series, was crucial. As the series above
converged for|x| < 1, with a remainder for each partial sum, then allowingx to exceed
1 gave it an imaginary value determined by the remainder which was in this case infinite
and imaginary. [3, p 370]

Bernoulli, after 1619, continued mathematics only as a sideactivity, taking a chair in Logic
at Basel followed by a chair in Jurisprudence [4]. In the late1730’s, however, he offered a
new proof, after several by Euler, thatπ2

6
= 1 + 1

22 + 1
22 + 1

32 + 1
42 + . . . .

Euler, helping in the publication of Bernoulli’s article, began a correspondence in 1742.
Bernoulli was troubled by Euler’s handling, in one of Euler’s proofs of the same formula,
of the infinite series and product forsin s. Euler had

sin s = s(1 − s2

π2 )(1 − s2

22π2 )(1 − s2

32π2 ) · · · = s − s3

1·2·3
+ s5

1·2·3·4·5
− + . . . ,

− the two expressions shared the zeroes− and then equated the coefficients ofs3.

Bernoulli located the problem in the sine series, writing toEuler, 13 July 1742, saying a
demonstration was needed that “the seriess − s3

6
+ s5

120
− + . . . converges and gives the

sine of the arcs no mattter what value is assigned tos.”
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Bernoulli brought up an argument credited to Cramer, that inworking with an ellipse, say
x2 + y2

b2
= 1, whose points are given in terms of arclengths from (1, 0), then the ordinate

of a point− its sine− is expanded as

s −
s3

6b4
+ − . . . .

Its roots arekC, k = 0,±1,±2, . . . , whereC is half the circumference of the ellipse.
So following Euler’s argument we would get the sum of the reciprocal squares to be the
generally incorrect valueC

2

6b4
.

Bernoulli’s diagnosis was that the series was “made divergent ass grows, ” and wondered
whether all equations of infinite degree have imaginary roots. [18, p 683]

When Euler’s letter of 1 September 1742 did not directly answer Bernoulli’s objection,
Bernoulli repeated the question in his next letter, of 24 October 1742. Apparently puzzled
at Bernoulli’s concern, Euler answered him on 10 November 1742:

First, I cannot satisfactorily grasp the reason that you deny that the series
s − s3

6
+ s5

120
− etc. can be regarded as equally giving the sine of arcs, or

the products(1 − ss
ππ

)(1 − ss
4ππ

) etc. unless at the same time convergence
is demonstrated. For this seriess − s3

6
+ s5

120
− etc. is found =sin s

by legitimate integration and it will certainly equal that sum whether it is
convergent or divergent. [4, p 551]

Whether convergent or divergent!? So Euler had told Bernoulli that his identification of
the series with the sine function did not depend on the convergence of the series. Might
this have reignited Bernoulli’s concern with divergent series?

That next letter was dated 6 April 1743. Bernoulli, again, emphasized the remainder. “. . .
a divergent series continued to infinity always lacks something which gives the exact value
of the quantity which is developed in the series. In this way,1

1−x
is not = 1 + x + x2 +

. . . + x∞ but rather 1
1−x

= 1 + x + x2 + . . . + x∞ + x∞+1

1−x
.”

Euler answered 14 May 1743. He objected to consideration of the remainder in the case
of divergent series. He made a distinction between a “numerum infinitum determinatum”
and “infinitum absolutum.” The example he gives illustratesthe distinction:

This would be false,0 = 1 − 3 + 5 − 7 + 9 − . . . ± (2∞ + 1), but with
the idea of all boundaries removed, it can be affirmed withouterror that
0 = 1 − 3 + 5 − 7 + 9− [etc.] in infinitum. In this way is the opinion
more strongly confirmed that this way of treating the sum of series will
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in no case lead me into error. [Euler seems to have in mind the formula
1−x2

(1+x2)2
= 1 − 3x2 + 5x4 − 7x6 + etc.]

When Bernoulli answered Euler, on 29 November 1743, the discussion had clearly turned
to divergent series whose terms grew in magnitude to infinity, but still suggested a connec-
tion to convergent series. He told Euler, for example,

I do not believe that properties of finite algebraic equations, for example
that the negative coefficient of the second term is equal to the sum of all
roots etc., are properly applied to equations having terms continuing with-
out bound, of which none is considered the last, and consequently in which
equations neither the number nor sum of the roots can be conceived.

Bernoulli went on, through several examples, to point out the severe difficulties which
arise from identifying a divergent series with “the quantity from which it is formed.” For
example,

it is also absurd to say that the recurrent series1 + 3 + 8 + 19 + 43 + etc.
is equal to just its first term, that the total equals its smallest part, since it is
formed from the quantity 1

1−3+1+2
.”

[ 1
1−3x+x2+2x3 , according to [3, p 710]].

[Euler worked almost exclusively with alternating divergent series.]

Euler further clarified his concepts in his next letter, of 4 February 1744. He agreed that
divergent series do not have sums in the usual sense, but

if we wish to draw back from the common meaning of the wordsum, so
the sum of this series is not called ‘aggregatum omnium terminorum,’ but
rather the value of that finite quantity from whose development the series
resulted, then not only are the usual methods of summing, which involve
contradictions, eliminated, but also we can explain in whatway the sum-
ming of a divergent series will not lead us into error. . . . Further it is is to
be noted that, just as this new notion of sum agrees with the customary if
the series is convergent, so no confusion resulting from theintroduction of
this new idea is to be feared. This given, it will not be absurdif we seek the
sum of the highly divergent series 1 - 2 + 6 - 24 + 120 - 720 + etc. [;] for
I desire the value of the finite quantity from whose development this series
arises, and as that quantity is transcendental, it is sufficient to assign an ap-
proximate value. I found this value or sum to be approximately = 0,40478
[too high by about 0.001], and so less than a half unit. Against this certainly
no objection can be conceived by me, except that it should be demonstrated
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that the same series cannot arise from different finite expressions, but this
is for me beyond any doubt.

[See [17] for an analysis of Euler’s actual practice in handling divergent series. Euler was
on safe ground in that a power series with a positive radius ofcovergence represents a
unique function, but he lost that safety when he took up the factorial series.]

Bernoulli answered on 4 April 1745, more than a year later, with, for the divergent series,
just a request: “I would be grateful if you would indicate to me the transcendental formula
= 0,40478 from which arises the series 1 -2 + 6 - 24 + 120 -720 + etc,” and a short
comment: “if the same series could be developed from more than one distinct expression,
. . . it would follow that that type of expression could not be called the value or sum of the
divergent series, and thus my feeling would be confirmed, as Iclaim, that divergent series
have no value.”

Euler responded on 17 July 1745 with a thorough answer to Bernoulli’s request, preview-
ing his paperDe seriebus divergentibus, [12], of 1754. [A paper of this name would,
according to C. G. J. Jacobi, be read in 1746.] He associated the series with the curve
y = x − 1x2 + 2x3 − 6x4 + . . . :

The nature of this curve can be expressed by a differential equation, . . . ,
dy

dx
= x−y

xx
. . . whose integral, ife denotes the number whose logarithm =

1, will be e
−1

x y =
∫

e
−1
x dx
x

, taken so it vanishes when I setx = 0.

Solving fory and lettingx = 1, y =
∫

e1− 1
x dx
x

=
∫

dz
1−lz

when z = e1− 1

x andl denotes
the natural logarithm function. [Both integrals are definite integrals between limits 0 and
1 .] To approximate the integral, Euler then replacedlz by l(1−t), which he expanded as a
series, and then went on to develop the integral as the sum of aseries, giving 0,59521. [It is
difficult to account for Euler’s computed value by means of his series.] Euler finished this
section of his letter with a comment: “I can hardly believe that a case can be given where
the same divergent series arises from the development of several different formulas.”

A long postscript immediately followed Euler’s letter. It allows us to date the first appear-
ance of a continued fraction representation of a divergent series. Euler wrote:

As I wrote this [above] about the divergent series 1 - 1 + 2 - 6 + 24 - 120
+ 720 etc., I happened upon [incidi] another way of expressing the finite
quantity from which it is born [nascitur].

1 − a + 2a2 − 6a3 + 24a4 − 120a5 + etc.
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=
1

1 +
a

1 +
a

1 +
2a

1 +
2a

1 +
3a

1 +
3a

1 +
4a

1 etc[to 5a]

;

limits are easily assigned between which the value is contained, and can
reach to the ratio of equality as closely as desired. Thus ifa = 1, and the
sought value is 1 - 1 + 2 - 6 + 24 - 120 + etc =s, then

s <
1

1
; s <

2

3
; s <

8

13
; s <

44

73
; s <

300

501
; . . . s <

22460

3
;

s >
1

2
; s >

4

7
; s >

20

34
; s >

124

209
; s >

920

1546
; . . . s >

78040

130922
etc.

Thus I can places between decimal fractions so it lies between the lim-
its 0,5963107 and 0,5963764 of which the later is much closerto the true
value than the former [ The latter claim is not correct. ] so ittruly is about
0,5963475. [The decimal bounds Euler gives are values of thefinite con-

tinued fractions taken as far as
9

1 + 10
and

9

1 +
10

1 + 10

; the second should

have 89 for its last two digits. ]

I found by a more exact computations = 0, 5963475922.[The first six digits
after the comma are correct.] My earlier method, by which I found s =
0, 59521, was not correct or at least not as appropriate for computation.
This value subtracted from 1 will be the value ( as you may wantto call it)
of the series 1 - 2 + 6 - 24 + 120 - 720 + etc = 0,4036925, [Perhaps the 9 is
a misprint?] which in my last letter was incorrectly 0, 40478. . . . . That the
series

z − 1z2 + 2z3 − 6z4 + 24z5 − 120z6 + 720z7 − etc.

has a determined value can be demonstrated in the following way. Let the
curve be conceived for whose abscissa= x the ordinate isy = 1

1−lx
, then
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the area of the curve will be [by repeated integration by parts]∫
dx

1 − lx
=

x

1 − lx
−

1 · x

(1 − lx)2
+

1 · 2x

(1 − lx)3
−

1 · 2 · 3x

(1 − lx)4
+ etc.

which since it has a determinate value therefore also the series has a deter-
minate value. [lx denotes the natural logarithm ofx, and the integral is the
definite integral betweenx = 0 andx = 1.]

The infinite series1− 1 + 2− 6 + 24− 120 + etc. is the development of a finite definite
integral, evaluated atx = 1. The continued fraction is developed from the series. That the
definite integral, or area

∫
dx

1−lx
, directly gives the series 1 - 1 + 2 - 6 + 24 - 120 + 720 - etc.

reassures Euler that the series has a value. [See [16, p 295]:“integration was interpreted
geometrically as quadrature, i.e. the the result was exact insofar as it was geometrically
conceived.” [Giovanni Ferraro]]

Euler now had six correct digits after the comma, instead of the two correct digits given in
the main body of the letter. That higher accuracy seems due tothe continued fraction. In
[12], De seriebus divergentibus, further work with the continued fraction would lead to the
approximation 0,596 347 362 123 7, where the first nine digitsafter the comma are correct.
That same paper includes several other approximation schemes, including the differences
method that would be thoroughly developed inInstitutionum Calculi Differentialis, pars
posterior [11], Chapter 1. None gives the accuracy of the continued fraction nor gives
upper and lower bounds to the value. It is the continued fraction that, in practice, Euler
most trusted.

We note, as our own postscript, that the development of the continued fraction was set out
in [12], of a decade later. It is, applied to polynomials, thesame division process used to
write a ratio of integers as a regular continued fraction.

[From Article 21] A = 1 − 1x + 2x2 − 6x3 + 24x4 − . . . =
1

1 + B
, and

B will =
1x − 2x2 + 6x3 − 24x4 + . . .

1 − 1x + 2x2 − 6x3 + 24x4 − . . .
=

x

1 + C
,

. . .

Therefore C =
x − 4x2 + 18x3 − 96x4 + . . .

1 − 2x + 6x2 − 24x3 − . . .
=

x

1 + D

from which D =
2x − 12x2 + 72x3 − 480x4 + . . .

1 − 4x + 18x2 − 96x3 + . . .
=

2x

1 + E

Continuing,E = 2x
1+F

, F = 3x
1+G

, G = 3x
1+H

, H = 4x
1+I

, etc.

We arrive at
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A =
1

1 +
x

1 +
x

1 +
2x

1 +
2x

1 +
3x

1 +
3x

1 +
4x

etc.
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