EULER: CONTINUED FRACTIONS AND DIVERGENT SERIES (AND NICHOLAS
BERNOULLI)

CHRISTOPHER BALTUS

ABSTRACT. Euler developed the theory of continued fractions in th&0ls] driven in part by com-
putational interests. It is perhaps a surprise that thecgdsmn of a given series with a continued
fraction first received full development in the case of thedijent serie$ —z+ 222 —2- 323 +2.3-
4z* — ... . This connection was born during Euler’s correspondence Mitholas Bernoulli from
1742 to 1745. While he had already used divergent seriesdovfitues of convergent numerical
series, in his letters with Bernoulli his concepts and [icastare exposed, if not developed.

Euler a développé la théorie de fractions continues awscdes années 1730, conduit partielle-
ment par les intéréts quantificatifs. C’est peut-etre surprise que I'association d’une série donnée
avec une fraction continue a d’abord recu le développémemplet en cas de la série divergente
1—xz+42z% —2-32% + 2.3 42" etc. Cette connexion est née pendant la correspondanated’E
avec Nicholas Bernoulli a partir de 1742 a 1745. PendatEuder avait déja utilisé la série diver-
gente pour trouver des valeurs de série numérique coentrgdans ses lettres avec Bernoulli ses
concepts et pratiques sont exposés, si non développé.

1. CONTINUED FRACTIONS IN THE1730’s

Before Euler, continued fractions appeared in scatterednples, with the only coher-
ent development amounting to a couple pageArithmetica Infinitorum22], 1656, of
John Wallis (1616-1703). That same work includes an intngexample, discovered by
William Brounker, later repeated in WallisAlgebra[23, p 356][Latin edition 1693]. Itis
a continued fraction for the ratio of a square to its insatibecle:

(1) 1+ 5

25
N 49
2 4+ etc.

2+
2+

Euler’s first work with continued fractions, it appears,ahxed the separable Riccati equa-
tion. His continued fraction appeared in his letter to Gfais Goldbach of 25 November

Date June 2008.



2 CHRISTOPHER BALTUS

1731. The separable Riccati equation

() adq = ¢*dp — dp
could, by settingp = (2n + 1)xT1+1 [20] [1], be transformed to
3) ady = y*dx — o da,

He then found, leaving just meager hints of the trail he feld [See [19]],
1

(4) g=—=+
b

P 1

etc. etc. etct —

2(n—1)a

This substitution holds if is a positive integer.

The continued fraction reappeared in “De fractionibus icwm$ dissertatio,” [8] of 1737.
The separable Riccati equation

adq + ¢*dp = dp
yields e* =1+ -2 intowhich the continued fraction (4), withreplaced by-a,

qg—1
can be incorporated. Withset equal tcgip, we arrive at

Py
(\]

(5) es =1+

2s — 1+
6s +

10 S
S 14s + ete.

(5) converges for positive The full continued fraction giveei as a function ok written
as an infinite continued fraction, the first such functionregpntation. But it was an
isolated case, a function emerging as the solution of ardifteal equation.

[8], of 1737, and “De fractionibus continuis observatichafs1 739 [10] constitute a con-
tinued fraction primer. Euler opened [8] by noting that coned fractions, although less
used than infinite series and products, are quite well stitegpproximate computation.
In [8], Euler introduced continued fractions ferand related expressions by applying
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repeated division to the decimal expansion until a pattenerged. This all suggests a
computational motivation for Euler’'s early work with camtied fractions. Only then did
he turn to justification: he showed that a continued fractierived from (5), written as a
ratio of series, satisfies the separable differential eguétom which it originated.

Euler began [10] by developing formulas that produced aicaat fraction corresponding
to a given series. Following [10] and [8], the continued fiac

(6) a+ “ 5
b+
~
c—+ . 5
e + ete.
hasconvergents
(7) %, ?, g, %, %, etc. where A=a, B=a-1+0bA,

C=pA+cB, D=~yB+dC, ..., and
P=b Q=p-14+cP, R=~P+dQ, ....

[The recurrence formula is found in Wallis’s [22, Prop 191].

Then any convergent can be written as a finite series, asxéongle,
D A B A C B D C

(8) E_TJr(f_T)Jr(@_F)JF(R Q)

A B-l—AP+CP—BQ DQ—-CR

1 1-P P-Q R-Q
a Q@ af afy
1T P PO RO

The last line of (8) follows from a property not proved in [18}]t later proved by a loose

induction argument in [13] and [15]. We can check directlgtitior example,

(9) B-1— AP = q; CP—-BQ=(BA+cB)P—B(f-1+cP)

=0B(AP—-B-1)+c¢BP — BcP = —af}, etc.

From (8) and (9), for a given series ! + 32 +e2+..., corresponding values (not unique)
for a,P,Q,R,...,bcd,... canbefound,andfromthesea,s,~,..., giving the
continued fraction.
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Euler noted in Articles 5 and 6 of [8] that whenb, ¢, . .. anda, 3,7, ... are all positive,
then the first, third, fifth convergents, etc., namely,

« «
a, a + ) a+ 9

el
c gl
ct——

d+ -

€

form an increasing sequence of numbers all less than thea®og sequence of conver-
gents of even order. This seems to have been sufficient réas&uler to conclude “it
will be possible to approach the true value of the continuaction as closely as desired.”

The first applications of Euler’s new procedure was the cudl fraction development of
1

a sequence of definite integrafsmdx where the integration is understood to be from
x =0 to x = 1. The integrand is expanded in a power series, integratedlgn@arm,
and then transformed by the new procedure into a continaetidn. A notable example
is the casen = 2, giving 7. Where in [8] Article 4, Brouncker’s continued fraction (1)
for % is found by a complicated argument attributed to Wallis,ifi][we have a direct

development of the continued fraction from Leibniz’s sgrie

7T_1 1+1 1+
4 3 5 7

This passage from an integral or ratio of integrals to a p@&ees to a continued fraction
is perhaps the most typical strategy for Euler. Giovannrdfer[17] sees the continued
fraction link as essential to Euler’'s understanding of djeat series. After several exam-
ples of the integral to series to continued fraction pasdagerote

series were conceived as a mere combinatorial instrumting contin-
ued fractions and integrals. It thus was of no importancéef geries by
themselves had a meaning as quantities, they were convergent) or not.
Moreover, even if the series had no sum in the ordinary seheg,could
however obtain a meaning merely from the fact that they edl&vo ex-
pressions of the same quantity. More specifically: if thergiiya A was
expressed by the integraland by the fractiorf’, and one could transform
I into F' by the seriesS, then it seemed obvious that the serigalso rep-
resented the quantity¢. [17, p 89]
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2. DIVERGENT SERIES IN THE1730’s

18th century mathematicians understood in practice thexmgaf a convergent series.
Leibniz, for example, wrote to Nicholas Bernoulli (1687587 in 1713 that a series was
advergent—— his word for “convergent™ — if “it could be continued so that it differed
from some finite real quantity by less than any given quan{By p 370]

Euler used series without regard to their convergence iaraépapers of the 1730’s. Not
that he reached false conclusions, but he invoked prirgigtéch may not hold for diver-
gent or conditionally convergent series. See[7], of 17849], of 1737, Euler found

11 1 1 1 1
ctstst=t=+ ... = ) =1.

3 7 8 15 24 mr—1
m>1,n>1
Euler's proof began with the divergent series= 1 +1 + 1+ 1+ 1+ . Rearrang-
ing,
1 1 1 1 1 1 1 1 1 1 1

r=1+[+-+c+—+. I+ttt gt It ottt

2 4 8 16 39 27 81 5 25 125
f’+ ! + ]4—f’+ ! + ]4—[1<+ ! + .. and so then
sttt gttt :

r=1+1+2+14+1414 14 Cancellationgives 1 =1+14+14+L1 4L+ .

A rigorous proof can be given. L&, denote the partial suh+ 2 + 1 + 1+ 14+ 41
let T be the set of fractions of forrﬂr}—_l, m, n > 2, and letT;, denote the sum of terms

of T which are greater than or equala §+1+ 3§+ +...+ 1.

Then, rearranging,

&:1+ﬁ+1+1+i+HJ+ﬁ+1+lw~£+uyul+i+—L+n}+
2 4 8 16 39 27 81 5 25 125
11 11 1 1
[6+%+...]+[?+4—9+...]—F[E‘FW—F...]...,

where the sums are finite. If the geometric series are allrmoed to infinity, we get:
1 1 1 1 1 1
Sp<l4+ld+sd+-+-+-+-+...+-,
F 2456 9 j
wherej > k. Cancellation give§), < 1, solimy_,.. 7, = L < 1.

Ontheotherhand§, — T, =1+ 3+ 1 ++ + & + & +... + + (where, for simplicity, we
supposég ¢ T and thatt # n? for any integel; greater than 1) =

1 1 1 1 1 1 1 1 111
P i e e R [ ol e e e i R [ ol P i Rl R S S

1
24 8" 16 379 2781 5 25 125 k
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(These geometric series are infinite.)

1 1 1 1 1 1 1 1 1

:S’f_1+[21+ﬁ+ﬁ+ I+ [3_m+3m+1+3m+2+'"]+[5_n+5n+l+w+“']+”'

where2!, 3™ 57, etc, are all greater than andi, m, n, etc. are all greater than 1.

1 1

Then[s + 5t + 5= + - - ]z 71 < 7 77 and, in general - - 1 < whenj > 2

’HL 1

andm > 2. Note that—, =, etc. will be dlstlnctelementsdf all < 1.

Let positivee be given. Smc% + 2 + + 15 + 24 + ... converges, there s so that the
sum of the elements d&f which are< cis< 5. For such &, then,

2 2 2
Sp—Tp, < S, —1 o< Sp—1+e
& k & +2l_1+3m_1+5n_1+ k + €

Therefore, I}, > 1 — ¢, completing the argument that the sum is 1. [See also [2].]

3. CORRESONDENCE WITHNICHOLAS BERNOULLI, 1742 - 1745

Nicholas Bernoulli (1687 - 1759) had written to Leibniz on @riA 1713 that the binomial
expansion of 1 —z)~2 = 1+1x+1352 4. 135,31 although divergent whep| > 1,
still had a value. Bernoulli said that the remainder termingj the quantity by which a
partial sum differs from the value of the entire series, wagial. As the series above
converged foilz| < 1, with a remainder for each partial sum, then allowintp exceed
1 gave it an imaginary value determined by the remainderhwvigs in this case infinite
and imaginary. [3, p 370]

Bernoulli, after 1619, continued mathematics only as aaddieity, taking a chair in Logic

at Basel followed by a chair in Jurisprudence [4]. In the [B880’s, however, he offered a
2 1 1 1 1

new proof, after several by Euler, thgt =1+ 5 + s+ =+ 2 + ... .

Euler, helping in the publication of Bernoulli’'s articlegdpan a correspondence in 1742.
Bernoulli was troubled by Euler’s handling, in one of Eugproofs of the same formula,
of the infinite series and product feim s. Euler had

sins = s(1— 5)(1— 50)(1 = g5m) - =8 — 195 + 1995 — +e-os

— the two expressions shared the zereeand then equated the coefficientssdf

Bernoulli located the problem in the sine series writindgetder, 13 July 1742, saying a

demonstration was needed that “the sesies% > 4 1—250 + ... converges and gives the

sine of the arg no mattter what value is aSS|gnedstb
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Bernoulli brought up an argument credited to Cramer, thatarking with an ellipse, say
z? + z—j = 1, whose points are given in terms of arclengtiiom (1, 0), then the ordinate
of a point— its sine— is expanded as

83

S——+—....

Its roots arekC, k = 0,+1,+2,... , whereC' is half the circumference of the ellipse.
So following Euler's argument we would get the sum of thepemtal squares to be the
generally incorrect valu%.

Bernoulli’s diagnosis was that the series was “made divergss grows, ” and wondered
whether all equations of infinite degree have imaginarysofd8, p 683]

When Euler’s letter of 1 September 1742 did not directly arsBernoulli’s objection,
Bernoulli repeated the question in his next letter, of 24dDet 1742. Apparently puzzled
at Bernoulli’'s concern, Euler answered him on 10 Novembd217

First, | cannot satisfactorily grasp the reason that yowdbat the series
s— £ 4 %0— etc. can be regarded as equally giving the sine okacr

6
the products(1 — 22)(1 — ;=) etc. unless at the same time convergence

is demonstrated. For this series- £ + =~ etc. is found =sin s
by legitimate integration and it will certainly equal thains whether it is

convergent or divergent. [4, p 551]

Whether convergent or divergent!? So Euler had told Belnthat his identification of
the series with the sine function did not depend on the cgevere of the series. Might
this have reignited Bernoulli’s concern with divergentes?

That next letter was dated 6 April 1743. Bernoulli, againpeasized the remainder. “...
a divergent series continued to infinity always lacks somgttvhich gives the exact value
of the quantity which is developed in the series. In this V\{@; isnot =1+ + 22 +

oco+1

..+z®butrathery =14z +a2?+ .. 42>+ L

Euler answered 14 May 1743. He objected to consideratioheofémainder in the case
of divergent series. He made a distinction between a “numenéinitum determinatum”
and “infinitum absolutum.” The example he gives illustratesdistinction:

This would be false) =1 -3 +5—-7+9 — ... £ (2° + 1), but with
the idea of all boundaries removed, it can be affirmed witlestudr that
0=1-3+5—7+9— [etc.] ininfinitum. In this way is the opinion
more strongly confirmed that this way of treating the sum afesewill
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in no case lead me into error. [Euler seems to have in minddiaula

e = 1 — 322 4 50" — 728 4 etc]

When Bernoulli answered Euler, on 29 November 1743, thaudson had clearly turned

to divergent series whose terms grew in magnitude to infibitystill suggested a connec-
tion to convergent series. He told Euler, for example,

| do not believe that properties of finite algebraic equatjdor example
that the negative coefficient of the second term is equaléostim of all
roots etc., are properly applied to equations having tewnsirruing with-

out bound, of which none is considered the last, and consgigue which

equations neither the number nor sum of the roots can be iveadce

Bernoulli went on, through several examples, to point oet $bvere difficulties which
arise from identifying a divergent series with “the quanfrom which it is formed.” For
example,

it is also absurd to say that the recurrent seties3 + 8 4+ 19 + 43 + etc.

is equal to just its first term, that the total equals its seslpart, since it is

formed from the quantitm.”
1

[ e

[Euler worked almost exclusively with alternating divemgseries.]

according to [3, p 710]].

Euler further clarified his concepts in his next letter, ofebRuary 1744. He agreed that
divergent series do not have sums in the usual sense, but

if we wish to draw back from the common meaning of the weun so
the sum of this series is not called ‘aggregatum omnium t@omim, but
rather the value of that finite quantity from whose developntbe series
resulted, then not only are the usual methods of summing;hwinivolve
contradictions, eliminated, but also we can explain in wkay the sum-
ming of a divergent series will not lead us into error. . . .tRaritisis to
be noted that, just as this new notion of sum agrees with tetomary if
the series is convergent, so no confusion resulting fromineduction of
this new idea is to be feared. This given, it will not be abstivek seek the
sum of the highly divergent series 1 - 2 + 6 - 24 + 120 - 720 + eldof

| desire the value of the finite quantity from whose developntleis series
arises, and as that quantity is transcendental, it is seffi¢cd assign an ap-
proximate value. | found this value or sum to be approxinyate0,40478
[too high by about 0.001], and so less than a half unit. Agdis certainly
no objection can be conceived by me, except that it shoul&b®dstrated
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that the same series cannot arise from different finite esgowas, but this
is for me beyond any doubt.

[See [17] for an analysis of Euler’s actual practice in hamgdtivergent series. Euler was
on safe ground in that a power series with a positive radiusogérgence represents a
unique function, but he lost that safety when he took up thefel series.]

Bernoulli answered on 4 April 1745, more than a year lateth wWor the divergent series,
just a request: “l would be grateful if you would indicate te the transcendental formula
= 0,40478 from which arises the series 1 -2 + 6 - 24 + 120 -720c# ahd a short
comment: “if the same series could be developed from moredha distinct expression,
.. . itwould follow that that type of expression could not la#ied the value or sum of the
divergent series, and thus my feeling would be confirmed céairh, that divergent series
have no value.”

Euler responded on 17 July 1745 with a thorough answer todddris request, preview-
ing his papeme seriebus divergentibu$l?2], of 1754. [A paper of this name would,
according to C. G. J. Jacobi, be read in 1746.] He associbateddries with the curve
y=1x—1o?+22% — 62" + ... :

The nature of this curve can be expressed by a differentigtean, . . . ,
dy — 2=y whose integral, it denotes the number whose logarithm =

dx Tx

— -1
1,willbee= y = [ <=2 taken so it vanishes when | set= 0.

xT

Solving fory and lettingr = 1, y = [ el%d"” = [ 1% whenz =¢!"+ andl denotes
the natural logarithm function. [Both integrals are deénittegrals between limits 0 and
1 .] To approximate the integral, Euler then replatebly /(1 —¢), which he expanded as a
series, and then went on to develop the integral as the sursenfes, giving 0,59521. [Itis
difficult to account for Euler’s computed value by means afderies.] Euler finished this
section of his letter with a comment: “I can hardly believatth case can be given where

the same divergent series arises from the developmentefaelrfferent formulas.”

A long postscript immediately followed Euler’s letter. ltavs us to date the first appear-
ance of a continued fraction representation of a divergemes. Euler wrote:

As | wrote this [above] about the divergent series 1 -1 + 2 - @1+ 220
+ 720 etc., | happened upon [incidi] another way of expres#ie finite
quantity from which it is born [nascitur].

1 —a+ 2d% — 6a® + 24a* — 120a° + ete.
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1+ ¢
1+ a2a
14 5
b 3a
L 3a
L+ 4a
bt 1 etc[to 5al

limits are easily assigned between which the value is coathiand can
reach to the ratio of equality as closely as desired. ThusHf 1, and the
soughtvalueis1-1+2-6+24-120 + etezthen

L2 8 M _ 300, _ 22460,
17 %S3 Sy StSwy TSy ST T g
1 4 20 1 _ 920 78040
- S — — S —_— —_— ... S .
9’ 7 073y 2000 7 1546 130922

Thus | can places between decimal fractions so it lies between the lim-
its 0,5963107 and 0,5963764 of which the later is much cluoséne true
value than the former [ The latter claim is not correct. ] siouty is about
0,5963475. [The decimal bounds Euler gives are values dfitiite con-

9 9
tinued fractions taken as far alst—10 and 710; the second should
1+

. o 1410
have 89 for its last two digits. ]

| found by a more exact computatien= 0, 5963475922.[The first six digits
after the comma are correct.] My earlier method, by whichunfds =
0,59521, was not correct or at least not as appropriate for compuratio
This value subtracted from 1 will be the value ( as you may wauctll it)
of the series1-2+6-24 + 120 - 720 + etc = 0,4036925, [Perhap9 ts
a misprint?] which in my last letter was incorrectly 0, 40478 . That the
series

2 —12% + 223 — 621 + 2425 — 12025 + 72027 — ete.

has a determined value can be demonstrated in the followayy et the
curve be conceived for whose abscissa the ordinate i3y = ——, then

1—lx?
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the area of the curve will be [by repeated integration bygjart

/ dx T 1-x n 1-2x 1-2-3x+t

— _ — etc.
1=z 1—-lz (A-Ilz)? (A-lz)3 (1-lx)*
which since it has a determinate value therefore also thesseas a deter-
minate value. |z denotes the natural logarithm @f and the integral is the

definite integral between = 0 andz = 1.]

The infinite seriesl — 1 +2 — 6 + 24 — 120 + etc. is the development of a finite definite
integral, evaluated at = 1. The continued fraction is developed from the series. That th
definite integral, or areg 16_”51,, directly givesthe series 1-1+2-6+24-120+ 720 - etc.
reassures Euler that the series has a value. [See [16, p“2&8&pgration was interpreted
geometrically as quadrature, i.e. the the result was eracfar as it was geometrically

conceived.” [Giovanni Ferraro]]

Euler now had six correct digits after the comma, insteati@tivo correct digits given in
the main body of the letter. That higher accuracy seems dtleetoontinued fraction. In
[12], De seriebus divergentibus, further work with the coméd fraction would lead to the
approximation 0,596 347 362 123 7, where the first nine dijtes the comma are correct.
That same paper includes several other approximation sehencluding the differences
method that would be thoroughly developedmstitutionum Calculi Differentialis, pars
posterior[11], Chapter 1. None gives the accuracy of the continuectira nor gives
upper and lower bounds to the value. It is the continuediradhat, in practice, Euler
most trusted.

We note, as our own postscript, that the development of theéraged fraction was set out
in [12], of a decade later. It is, applied to polynomials, faene division process used to
write a ratio of integers as a regular continued fraction.

. 1
[From Article 21] A=1— 1z +22° —62° +242* — ... = —— and
1+ B
) 1z — 222 + 623 — 242* + . .. T
Bwill = = )
1—1lz+222 —-6224+2424—... 1+C
x —4x? + 1822 — 96zt + . .. T
Therefore C = =
1—2x+6x2 —24x3 — ... 1+ D
) 20 — 1222 + 7223 — 480x* + . .. 2
fromwhich D = =
1 —4z + 1822 — 9623 + . .. 1+ F

H i _ 2z _ 3z _ 3z _ 4z
Continuing,&r = 3%, F =% G=q17, H=7{5 et

We arrive at
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