
NOTES ON EULER’S CONTINUED FRACTIONS

CHRISTOPHER BALTUS

ABSTRACT. When Euler first worked with continued fractions, by 1731, the subject consisted of
a few formulas, largely from Wallis, and a few particular continued fractions. Euler established
ties to differential equations and infinite series, and studied a variety of special forms, establishing
continued fractions as a field within mathematics. His work with the Pell equation illustrates the
strength of his general approach together with its limitations. Euler’s lesser interest in theory limited
his achievement, where the young Lagrange quickly surpassed him.

1. INTRODUCTION

Mathematicians may be gathered into two groups: solvers of problems and builders
of theory. In examining the continued fraction work of Leonhard Euler (1707 - 1783)
from the 1730’s, together with a 1759 paper, we put Euler with the first group. We see
his brilliant exploitation of examples to arrive at general forms, the intense interest in
computation, the discovery of connections between apparently distant ideas. At the same
time we will see his limitations.

Before Euler, continued fractions appeared only in scattered examples, with the only
coherent development amounting to a couple pages in Arithmetica Infinitorum [24], 1656,
of John Wallis (1616-1703). That same work includes an intriguing example, discovered
by William Brounker, later repeated in Wallis’s Algebra [25, p 356][Latin edition 1693].
It is a continued fraction for the ratio of a square to its inscribed circle:

1 +
1

2 +
9

2 +
25

2 +
49

2 + etc.

2. THE RICCATI EQUATION, 1731

Euler seems to have first encountered continued fractions in working with, as he wrote,
“the recently considered case of the separable Riccati equation.” [11, p 58] Riccati had
discussed the equation in a 1724 paper where, by substitution, he reduced a second order
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differential equation to first order [21]. [See [13, p 483].] Euler had worked along similar
lines since 1728, when he reduced certain second order differential equations to first order
by a change of variable. [3]

Euler’s continued fraction result was described in his letter to Christian Goldbach of 25
November 1731, from St. Petersburg. After comments on the equation

dz = (p+ 1)zdν +
n(1− z)dν

ν
,

he observed that the separable Riccati equation

(1) adq = q2dp− dp

could, by setting p = (2n+ 1)x
1

2n+1 , be transformed to

(2) ady = y2dx− x−
4n

2n+1dx.

The use of a power of x was made by Riccati, and Daniel Bernoulli had found the possible
values for the exponent [2]. We get

(3) q = −a
p

+
1

−3a
p

+
1

−5a
p

+
1

−7a
p

+
1

etc. etc. etc. +
1

−2(n−1)a
p

+ 1

x
2n

2n+1 y

This substitution holds if n is a positive integer.
On the other hand, Euler continued, (2) is transformed to (1) by the corresponding

substitution x = ( p
2n+1

)2n+1. And when we solve in the continued fraction (3) for

x
2n

2n+1y = y( p
2n+1

)2n, we get

(4) y(
p

2n+ 1
)2n =

1

(2n−1)a
p

+
1

(2n−3)a
p

+
1

(2n−5)a
p

+
1

etc. etc. etc. +
1

3a
p

+ 1
a
p
+q

The substitution p = (2n + 1)x
1

2n+1 is clear enough. For equation (2) suggests that y
might be replaced according to

(5) y = x−
2n

2n+1 z.
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When we, then, divide by x−
2n

2n+1 , we arrive at

adz − 2naz

2n+ 1
x
−2n−1
2n+1 dx+ x−

2n
2n+1dx = x−

2n
2n+1 z2dx.

Now set the third term x−
2n

2n+1dx equal to dp. Then p = (2n+ 1)x
1

2n+1 . Substitution
gives

(6) adz − 2nazdp

p
+ dp = z2dp.

So far there is nothing surprising. But where does the continued fraction come from?
Euler said no more about it here, in 1731, nor in his 1737 paper [6] “De fractionibus
continuis dissertatio,” in which he returned to this continued fraction, nor did Goldbach
bring up the question of a derivation in his answer to Euler in December 1731. It is worth
examining. [See Euler Vol 16.2 commentary, [20].]

After the fact – seeing the continued fraction – we make the replacement

(7)
1

z
= w +

(2n− 1)a

p
.

We divide each term of (6) by z2, giving

a

z2
dz − 2nadp

zp
+
dp

z2
= dp,

and then replace 1
z

according to (7). Cleaning up the result gives

adw − 2(n− 1)awdp

p
+ dp = w2dp.

This has the form of (6) except that n has been replaced by n − 1. The procedure can be
repeated, until the sequence n, n − 1, n − 2, . . . reaches 0, giving the separable equation
(1).

But how did Euler think of the substitution (7)? Nothing like it had been done before.
This author can only attribute it to Euler’s fertile mathematical imagination.

It should be noted that in the early 1730’s Euler did nothing further with this continued
fraction. It appears to not have excited his interest. His long and detailed treatment of the
Riccati equation, from 1732, in [5] [see also [22, p 114-121]] is by an elaborate sequence
of substitutions with no hint of a continued fraction.
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3. DE FRACTIONIBUS CONTINUIS DISSERTATIO, 1737

In 1737, Euler wrote the most complete treatment of continued fractions to that time.
It was called “De fractionibus continuis dissertatio.” [6] [In Article 2, Euler tells us
that he had worked with continued fractions for a long time – despite their limited
appearance in his publications.] Euler opened the work by noting that continued fractions,
although less used than infinite series and products, are quite well suited to approximate
computation. After giving Brouncker’s continued fraction for 4

π
, he presented basic

concepts and formulas of continued fractions. In particular, the continued fraction

(8) a+
α

b+
β

c+
γ

d+
δ

e + etc.

is computed by the sequence of convergents [modern term] forming the middle line of this
table

a b c d

1

0

a

1

ab+ α

b

abc+ αc+ βa

bc+ β
etc.

α β γ δ

After the first, the convergents are the sequence of truncated continued fractions, and
where each numerator [denominator] is formed of the previous numerator [denomina-
tor] multiplied by the Latin letter above added to the numerator [denominator] before that
multiplied by the Greek letter below. [This is essentially found in Wallis’s [24, Prop 191].]

Then [Article 8] “the sum of a and all the differences [of the consecutive convergents]
will be the true value of the proposed continued fraction” [Wyman translation]. This
agrees with the modern definition of the value of a continued fraction, although we should
recall that Euler worked without an explicit definition of the value of an infinite series. This
correspondence of series and continued fractions was instrumental for Euler in finding
continued fraction representations of functions and the crucial link of continued fractions
with divergent series.

Articles 14 through 17 are devoted to computing rational approximations to π and the
number of days in the year – further suggesting a computational motivation for this
excursion into continued fractions. Euler noted the property of regular continued frac-
tions – where α, β, γ, etc. [partial numerators] are all 1 and a, b, c, d, etc. [partial
denominators] are all positive integers – that any convergent approximates the value of
the continued fraction closer than any other fraction with a smaller denominator. When
(8) is regular, we have have the fortunate notation [a, b, c, d, . . .].
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Articles 18 through 20 treat continued fractions for square roots of integers, a key ingre-
dient in the continued fraction solution of the Pell equation. For a modern reader who has
seen the continued fraction treatment of the Pell equation, Euler’s approach is a surprise.
To develop the regular continued fraction for

√
2, Euler began with the decimal expansion

of
√

2, and then by “continued division” we find that, after a = 1, all partial denomina-
tors are, apparently, 2. In the same way, for

√
3, we find a = 1, and then the partial

denominators alternate, with b = 1, c = 2, d = 1, etc. i.e.,
√

3 = [1, 1, 2, 1, 2, . . .].
Following Euler’s typical approach, he immediately generalized based on these two

examples. If x is the value of the continued fraction

(9) a+
1

b+
1

b+
1

b + etc.

then

x− a =
1

b+
1

b+
1

b + etc.

=
1

b+ x− a
,

from which it follows that

x = a− b

2
+

√
1 +

b2

4
.

From which it immediately follows – typical of Euler – that when in (9) b = 2a then
the value of the continued fraction is

√
a2 + 1.

A corresponding result is found for regular continued fractions whose partial denomi-
nators alternate b, c, b, c, b, etc.

The rest of [6] is devoted to continued fractions for e, the number whose natural loga-
rithm is 1, and related expressions such as

√
e and e+1

e−1
. As with

√
2, he began by applying

repeated division to the decimal expansion until a pattern emerged. But then he turned to
a general derivation and proof. He returned to the Riccati equation (1) and (2), with an
insignificant change in the sign of a, and the continued fraction solution (3). The solution
of the separable Riccati equation

adq + q2dp = dp

yields e
2p
a = 1 + 2

q − 1
into which the continued fraction (3), with a replaced by −a,

can be incorporated. If, then, “n is assumed to be an infinite number,” we have an infinite
continued fraction. From this we can get, for example, e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .].
As before, typically, Euler turned to a generalization of regular continued fractions whose
denominators form “an interrupted arithmetic progression.” He, finally, showed that the
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continued fraction satisfies the separable differential equation from which it originated. He
was able to write the nth convergent as a ratio of series, making the value of the continued
fraction, s, the ratio of the infinite series, and in a formidable display of substitutions he
showed that s satisfies the Riccati equation.

4. THE PELLEQUATION, 1732

We turn now to the Pell equation, where Euler also encountered continued fractions.
His first work was [4] “De solutione problematum Diophantorum per numeros integros,”
of 1732. The continued fraction here was implicit, not explicit, further suggesting Euler’s
lack of interest during the early 1730’s. The Diophantine problem was to find integer
values for x which make a given polynomial ax2 + bx + c a perfect square. Given one
solution and a solution to the Pell equation ap2 + 1 = q2, then an infinite sequence of
solutions can be produced. Euler provided a procedure to solve the Pell equation and
claimed, correctly but without proof, that it always had solutions.

Euler set out his method of solution in the example 31p2 +1 = q2, following Wallis ina
procedure attributed to Brouncker [23, Wallis to Brouncker, 17 Dec 1657, p 789-797] and
in [25, Chapter 98]. As q lies between 5p and 6p, then we let q = 5p + a. We substitute
to reach a new equation and then repeat the process. The steps are set out in a table:

q = 5p+ a

6p2 = 10ap+ a2 − 1 p =
5a+

√
31a2 − 6

6
p = a+ b

5a2 = 2ab+ 6b2 + 1 a =
b+
√

31b2 + 5

5
a = b+ c

3b2 = 8bc+ 5c2 − 1 b =
4c+

√
31c2 − 3

3
b = 3c+ d

2c2 = 10cd+ 3d2 + 1 c =
5d+

√
31d2 + 2

2
c = 5d+ e

3d2 = 10de+ 2e2 − 1 d =
5e+

√
31e2 − 3

3
d = 3e+ f

5e2 = 8ef + 3f 2 + 1 e =
4f +

√
31f 2 + 5

5
e = 2f + g

f 2 = 12fg − 5g2 + 1 f = 56g +
√

31g2 + 1.

We can now let g = 0 and work back to find p = 273 and q = 1520.
Sequences of integers from the table would reappear in Euler’s 1759 paper [8], with

denominators 6, 5, 3, 2, . . . as E2, E3, E4, E5, . . . .
The column on the right produces the continued fraction
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q

p
= 5 +

a

p
= 5 +

1
p
a

=

5 +
1

1 + b
a

= . . . =

5 +
1

1 +

1

1 +

1

3 +

1

5 +

1

3 +

1

2 + g
f

.

With g = 0 this is the regular or simple continued fraction expansion of 1520
273

and the
beginning – if the 2 is replaced by 1 + 1

1
– of the regular continued fraction expansion

of
√

31.
We have here a suggestion of an opportunity missed in 1732. Where Euler has

e = 2f + g,

which allowed Wallis and Euler to terminate the continued fraction with g = 0, a continu-
ation of the pattern of computations would give

e = f + g, then 6f 2 = 2fg + 5g2 − 1 and f =
g +

√
31g2 − 6

6
.

The right column in the table would then have

f = g + h and g = 10h+ i,

after which the pattern would repeat indefinitely. The analysis of 1759 might have ap-
peared 27 years earlier.

It appears that in 1732 Euler, like wallis earlier, did not recognize the continued fraction
connection.

5. SQUARE ROOT CONTINUED FRACTIONS

Euler’s development of continued fractions for square roots, in [6] and [9], suggests
that he may have missed the connection to the Pell equation because he gave did not need
to produce the regular continued fraction expansion. In Introduction to Analysis of the
Infinite [9] Article 377, following the method of [6], Euler showed that x, the value of the
continued fraction 9 with a = 0, [0, b, b, b, . . .], satisfies x2 + bx = 1, so x =

√
b2+4−b

2
.

In the next article Euler declared that “This method does not give an approximation of
the square root of all numbers.” To extend the method to include all numbers, we let
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x = [0, a, b, a, b, etc.] =

(10)
1

a+
1

b+
1

a+
1

b+ . . .

.

This gives ax2 + abx = b, so x =
√
a2b2+4ab−ab

2a
, from which “we can obtain the square

roots of all numbers.” The claim, apparently, is that for all nonsquare n there are integers
k, a, b so that nk2 = a2b2 + 4ab. If y = ab, the equation is y2 + 4y − nk2 = 0, or
y = −2±

√
4 + nk2. y is an integer exactly when the Pell Equation

w2 = 4 + nk2

has a solution. We know there is an integer solution since the Pell equation

np2 + 1 = q2

always has solutions. Multiplication by 4 gives

n(2p)2 + 4 = (2q)2,

solving the equation.
In the case of

√
31, we saw earlier that Euler solved 31p2 + 1 = q2 with p = 237, q =

1520. Then 4 + nk2 = 4 + 31(2p)2 = 9241600 = 30402. So y = ab = −2 + 3040 =

3038 = 98 · 38. Therefore, the continued fraction x = [0, a, b, a, b, etc.] =
√
a2b2+4ab−ab

2a
=

546
√

31−3038
62

.
Euler’s square root procedure certainly lets us compute

√
n as accurately as we like,

for any positive integer n, but it has come with no proof that it always works. It has taken
us no closer to a solution of the Pell equation. In fact, we seem to be left tracing a logical
circle. We can develop a continued fraction of form [0, a, b, a, b, . . .] from which

√
n can

be found if we first solve the Pell equation np2 + 1 = q2. As Euler soon found out, his
method to solve that Pell equation was by, essentially, producing the regular continued
fraction for

√
n.

6. THE CONTINUED FRACTION CONNECTION, 1759

Euler’s breakthrough work with the Pell equation was [8] “De usu novi algorithmi in
problemate Pelliano solvendo,” presented to the Berlin Academy in 1759. The paper was
published in the St. Petersburg Memoires for 1767, which only reached J.-L. Lagrange,
apparently, at the end of 1768. The dates are significant in indicating that Lagrange’s first
papers on the Pell equation, [14] and [15], were written without the benefit of [8].
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Euler began [8] with a review of the role of the Pell equation pp = lqq + 1 in finding
integers x which make lxx + mx + n a perfect square. He then connected that Pell
equation to a continued fraction:

since when pp = lqq + 1 then that makes approximately p
q

=
√
l, from

which it is clear that p
q

is that same fraction which so closely expresses the
irrational value

√
l, or, which so little exceeds it that, unless larger numbers

are summoned, cannot be made more accurate. Because that problem, once
solved successfullly by Wallis, is the same which I have solved for some
time much more easily by continued fractions. [Article 7]

Euler developed the continued fraction in examples. We will follow the modern notation
of [12]. The regular continued fraction [b0, b1, b2, b3, . . .] =

(11) b0 +
1

b1 +
1

b2 +
1

b3 + etc.

has partial denominators b0, b1, b2, b3, . . . , and convergents An

Bn
, n = 0, 1, 2, 3, . . . ,

where

A−1 = 1, A0 = b0, and An+1 = bn+1An + An−1, n = 0, 1, 2, 3, . . . ,

B−1 = 0, B0 = 1, and Bn+1 = bn+1Bn +Bn−1, n = 0, 1, 2, 3, . . . .

Euler presented three sequences associated with the continued fraction: {bn} , {En}, and{εn}.
[Euler used {v, a, b, c, . . . }, {α, β, γ, . . . }, and {A,B,C, . . .} respectively.] He also de-
noted “the greatest integer less than or equal to ” by a “ <′′, for which we will use “ < ∗′′.
We follow the notation of Lagrange’s [15] except that we keep bn in place of λn+1. ]

These sequences emerge naturally in the step-by-step development of the regular con-
tinued fraction for

√
n. We return to the example of

√
31, which Euler presented only

briefly after more detailed work with
√

61 and
√

67. We start with

(12) E1 = 1, and b0 < ∗
√

31, and ε1 = b0.

So b0 = 5, and then
√

31 = 5 +
1

x1

where, then, 1 < x1 =
1√

31− 5
=

√
31 + 5

31− 52
=

√
31 + ε1

E2 = 31− ε21
.

We now let b1 < ∗x1, or b1 < ∗
√

31 + ε1
E2

.

So
x1 = b1 +

1

x2

.
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Then

1

x2

=

√
31 + 5

6
− b1 =

√
31 + ε1
E2

− b1 =

√
31− (b1E2 − ε1)

E2

=

√
31− ε2
E2

,

and then 1 < x2 =
E2√

31− ε2
=
E2(
√

31 + ε2)

31− ε22
=

√
31 + ε2

E3 = (31− ε22)/E2

.

Thus we build our sequences by (12) and

(13) En+1 = (31− ε2n)/En, bn < ∗
√

31 + εn
En+1

, εn+1 = bnEn+1 − εn, when n ≥ 1.

Euler used, as an alternative, En+1 = En−1 + bn−1(εn−1 − εn), proved by (13), from
which we see that every En is an integer.

Euler indicated bounds on these sequences in Article 13. Let b0 be ν. First, by the
middle equation of ( 13 ), bn · En+1 − εn <

√
31, so, still by ( 13 ), εn ≤ ν for all

n. Further, bn is less than or equal to ν when En+1 > 1, and if we should have
En+1 = 1, then [with no proof given] bn = 2ν and εn = ν, and then the
sequence b1, b2, b3, . . . , 120, is produced again. In numerous examples, including the
development of

√
n for n = 2, 3, . . . , we always reach some En+1 = 1 and bn = 2ν,

and it is assumed that bn = 2ν will always be reached.
But there is no proof. In fact, Euler expressed his impatience. He ended Article 16:

This notable property [that we reach a bn = 2ν with En+1 = 1, ] which
in these operations is easily seen, rather than demonstrated by a labyrinth
of words, is properly seen in a large number of examples.

[Hanc proprietatem insignem, quae in ipsis operationibus facilius per-
spicitur, quam verborum ambage demonstratur, probe notasse in sequen-
tibus plurimum intererit.]

[Note: If En+1 = 1 = E1, then by (13) ν + εn = bn = εn + εn+1 so
εn+1 = ν = ε1. We then have En+2 = 31 − ε2n+1 = m − ν2 = E2, and bn+1 <

∗
√
m+εn+1

En+2
= b1. Therefore, the sequences {En}, {εn}, and {bn} all repeat. Moreover,

when we consider, in general, an integer m not of form w2 or w2 + 1 in place of 31,
we have by (13), En|(εn + εn−1), so En ≤ 2ν and En = m − ε2n. Now if
εn < ν, then En ≥ m − (ν − 1)2, so m − (ν − 1)2 ≤ 2ν. This last inequality
is equivalent to m ≤ ν2 + 1. This is impossible since ν < ∗

√
m while m does

not have the form w2 or w2 + 1. So εn = ν, En = m− ν2, and bn = 2ν. ]
Now, why does the Pell equation p2 − lq2 = 1 have a solution in positive integers

for any positive nonsquare l ? Euler proved, by a loose induction argument, that when the
nth convergent of the regular continued fraction expansion of

√
l is denoted An

Bn
, then

A2
n − lB2

n = (−1)n+1En+2.
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If En+1 = 1, n > 1, then

A2
n−1 − lB2

n−1 = (−1)nEn+1 = ±1.

With +1, we have a solution p = An−1, q = Bn−1 to the Pell equation; in the case of -1,
then p = 2A2

n−1 + 1, q = 2An−1Bn−1 is a solution.
That {bn} and {En} are periodic is clear enough. Lagrange gave an explicit argument

in [15], pointing out that the bounded sequence of integers {En} must have a repeating
pair En, En+1, which by (13) determines εn, then bn, and then εn+1, and then the entire
sequence from that point forward must repeat.

The argument that we must reach an En equal to 1, i.e., the Pell equation has a
solution, is somewhat harder. The first published proof was by Lagrange in [14] of 1768.
A more concise argument, based on the equations ( 13 ), was given in Lagrange’s ( [15,
Articles 33, 35] ), written later in 1768. Those papers were written, so Lagrange wrote
to Euler ( [7, Letter 26, 22 Dec. 1769]), without the benefit of Euler’s ([8]). [It should
be pointed out that only in the crucial Article 29 did Lagrange explicitly use continued
fractions in ([15]).]

Lagrange noted that, by (13),
bn−1En = εn−1 + εn <

√
31 + εn, and so En <

√
31 + εn. Now,

EnEn+1 = 31− ε2n = (
√

31− εn)(
√

31 + εn).

Since En <
√

31 + εn, then En+1 >
√

31− εn. Then,

En+1bn = εn+1 + εn > εn+1 +
√

31− En+1,

so bn >

√
31 + εn+1

En+1

− 1.

On the other hand, with εn <
√

31, then

bn =
εn + εn+1

En+1

<

√
31 + εn+1

En+1

.

Therefore, we have the central claim

(14) bn < ∗
√

31 + εn+1

En+1

.

Now when En and En+1 repeat going forward, as they must, then by (13) εn repeats.
But now as a consequence of (14), bn−1 repeats. And then, again by (13), εn−1 repeats
and then En−1 repeats. Eventually we work back to E1, which is 1. The Pell equation,
lp2 + 1 = q2, therefore, has infinitely many solutions in positive integers which appear
periodically as numerators and denominators of the regular continued fraction expansion
of
√
l.
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This argument lies surely within the capacity of Euler. Mights we, then, conclude that
it lay outside his interest?

Lagrange developed continued fraction solutions of equations in [16], [17], of 1769,
after seeing Euler’s [8], and he applied continued fractions specifically to the Pell equation
Bp2 + A = q2 in [18] of 1770. However, the second part of Euler’s Algebra [10], of
1770, “Analysis of indeterminate quantities,” does not mention the continued fractions
which had been so fruitful in [8]. It was only in Lagrange’s Additions, prepared in 1770
and 1771 for the 1774 French edition of Euler’s Algebra, that we see a full continued
fraction treatment of the Pell equation, with the important theorem, in Article 38, that all
solutions of Bp2 +A = q2, when B is a non-square positive integer and 0 < |A| <

√
B,

are found as numerators and denominators of convergents of the regular continued fraction
development of

√
B. The clean and simple continued fraction development of [8] is picked

up again in Legendre’s Essai sur la Théorie des Nombres of 1798.
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