Matter and Energy

Potential versus Kinetic Energy

Other examples of potential and kinetic energy:

Potential:
- water behind a dam
- energy stored in food
- energy stored in a battery

Kinetic:
- water falling over dam
- wind
- a moving train

Matter and Energy

Thermodynamics (i.e. energy transfer)

Matter is constantly recycled

Energy is NOT recycled

Matter and Energy

1st and 2nd Law of Thermodynamics

First Law: energy is conserved; neither created nor destroyed

Second Law: with each successive energy transfer, less energy is available to do work

Entropy is the tendency for all systems to go toward disorder
Energy from the Sun

The Solar Spectrum

Photosynthesis

Environmental Unity - every component of our existence affects every other component - and ultimately everything is powered by the sun

Photosynthesis: production of green plants

\[6\text{CO}_2 + 6\text{H}_2\text{O} \xrightarrow{\text{sunlight}} \text{C}_6\text{H}_12\text{O}_6 + 6\text{O}_2\]

Plants use glucose to build new plant material

Photosynthesis and Food

The green plants that store the sunlight are called *producers* - only plants capable of photosynthesis are producers - everything else is a consumer

We can arrange the producers and consumers so that they form a pyramid such that the producers are at the base

- 4th trophic level
- 3rd trophic level
- 2nd trophic level
- 1st trophic level
Although arranging producers and consumers into food pyramids and chains greatly oversimplifies the truth, it does help us visualize what’s going on.

1 ppm humans 1
1000 ppb = 1 ppm fish 10
100 ppb frogs $1 = 100$
10 ppb grasshoppers 10
1 ppb grass 100

More Food Chains and Webs

Figure 2.16

More Food Chains and Webs

Figure 2.17

More Food Chains and Webs
Biogeochemical Cycles

- Hydrologic cycle - fastest
- Carbon cycle
- Nitrogen cycle
- Phosphorus cycle - slowest
- Sulfur cycle