4A: \(x^\alpha, 2^k \cdot 3^l, y^\beta, 2 \cdot z^\gamma \)

\(x = 5, y = 7, z = 11: \) \(2^k \cdot 3^l = 2 \cdot 11^\gamma - 2 = 2 \cdot (11^\gamma - 1) = 2 \cdot 10 \cdot (11^{\gamma-1} + \ldots + 1) \) is divisible by 5, contradiction.

\(x = 5, y = 11, z = 7: \) \(2^k \cdot 3^l = 11^\beta - 1 = 10 \cdot (11^{\beta-1} + \ldots + 1) \) is divisible by 5, contradiction.

\(x = 7, y = 5, z = 11: \) \(2^k \cdot 3^l - 2 = 7^\alpha - 1 = 6 \cdot (7^{\alpha-1} + \ldots + 1) \) is divisible by 3, contradiction.

\(x = 7, y = 11, z = 5: \) as in case \(x = 7 \) or in case \(y = 11 \) above.

\(x = 11, y = 5, z = 7: \) \(5^\beta - 3 = 11^\alpha - 1 = 10 \cdot (11^{\alpha-1} + \ldots + 1) \) is divisible by 5, contradiction.

\(x = 11, y = 7, z = 5: \) \(2^\cdot 5^\gamma - 4 = 11^\alpha - 1 = 10 \cdot (11^{\alpha-1} + \ldots + 1) \) is divisible by 5, contradiction.