1A: \(x^\alpha, 2 \cdot y^\beta, 3^l, 2^k \cdot z^\gamma \)

\(x = 5, \ y = 7, \ z = 11: \) \(3^l - 1 = 2 \cdot 7^\beta \) yields \(2 \cdot (3^l - 1 + \ldots + 1) = 2 \cdot 7^\beta \) and \(3^l - 1 + \ldots + 1 = 7^\beta, \) so \(l \) must be odd. With \(l \) odd, \(2^k \cdot 11^\gamma = 3^l + 1 = 4 \cdot (3^l - 3^{l-2} + \ldots + 1); \) since the second factor is odd, we conclude that \(k = 2. \) But in that case \(5^\alpha - 1 = 2^k \cdot 11^\gamma - 4 = 4 \cdot (11^\gamma - 1) = 4 \cdot 10 \cdot (11^\gamma - 1 + \ldots + 1) \) would be divisible by \(5, \) contradiction.

\(x = 5, \ y = 11, \ z = 7: \) \(5^\alpha - 1 = 2 \cdot 11^\beta - 2 = 2 \cdot (11^\beta - 1) = 2 \cdot 10 \cdot (11^\beta - 1 + \ldots + 1) \) is divisible by \(5, \) contradiction.

\(x = 7, \ y = 5, \ z = 11: \) \(3^l - 1 = 2 \cdot 5^\beta \) yields \(2 \cdot (3^l - 1 + \ldots + 1) = 2 \cdot 5^\beta \) and \(3^l - 1 + \ldots + 1 = 5^\beta, \) so \(l \) must be odd. Arguing as in the case \(z = 11 \) case above, we conclude that \(k = 2 \) and that \(2 \cdot 5^\beta - 2 = 2^k \cdot 11^\gamma - 4 \) is divisible by \(5, \) contradiction.

\(x = 7, \ y = 11, \ z = 5: \) \(2^k \cdot 5^\gamma - 4 = 2 \cdot 11^\beta - 2 = 2 \cdot (11^\beta - 1) = 2 \cdot 10 \cdot (11^\beta - 1 + \ldots + 1) \) is divisible by \(5, \) contradiction.

\(x = 11, \ y = 5, \ z = 7: \) \(2^k \cdot 5^\gamma - 4 = 2 \cdot 11^\beta - 2 = 11^\alpha - 1 = 10 \cdot (11^\alpha - 1 + \ldots + 1) \) is divisible by \(5, \) contradiction.

\(x = 11, \ y = 7, \ z = 5: \) \(2^k \cdot 5^\gamma - 4 = 11^\alpha - 1 = 10 \cdot (11^\alpha - 1 + \ldots + 1) \) is divisible by \(5, \) contradiction.