CHROMATOGRAPHIC METHODS OF SEPARATION

BASIC PRINCIPLES

- All chromatographic separations rely on the differences in interaction between analytes and the two characteristic phases
- **Mobile phase**: carries/transports the analytes
- **Stationary phase**: interacts with the analytes as they are moving through it.

- Analytes that strongly interact with the stationary phase are retained longer, thus **elute** from the column later than those that interact weakly with the stationary phase.
- Analytes separate into bands
- Analytes are detected at the exit of the column and their signals recorded
- Plot: chromatogram
Classification based on the types of mobile and stationary phases and the kinds of equilibria involved in the transfer of solutes between phases

Name based on type of Mobile

Elution

- Elution: washing a species through a column by continuous addition of fresh mobile phase
- Mobile phase: eluent
- Partition between mobile and stationary phase
General Classification of Chromatographic Methods

- Classification based on the types of mobile and stationary phases and the kinds of equilibria involved in the transfer of solutes between phases.
- Name based on type of Mobile
 - **Gas Chromatography**
 - Mobile phase: inert gas (helium, nitrogen)
 - Stationary phase: supported liquid (SiO₂ coated with polymer)
 - Analyte must be volatile and thermally stable at working temperatures
 - Detection: flame ionization, thermal conductivity, MS
 - **Liquid-Liquid Chromatography**
 - Mobile phase: liquid
 - Non-polar: normal phase
 - Polar: reversed phase (water/acetonitrile, water/methanol)

Basic Theory

Important Parameters and Variables

- Two basic phenomena
 - Transport/ migration
 - Mass transfer between the two phases
 - Band broadening
- Retention time (t_R)
- Peak width
- Resolution
Migration of Solutes

- Effectiveness of separation of two solutes (A and B) depends in part on the relative rates of elution

- Rates of migration are determined by the magnitude of the equilibrium constants for the “reactions” by which the solutes distribute themselves between the mobile and stationary phases

Distribution Constants

- K_c: distribution constant
 - partition ratio
 - partition coefficient
- a_s: activity in stationary phase
- a_M: activity in the mobile phase
- c_s: concentration in the stationary phase
- c_M: concentration in the mobile phase
- K_c can be manipulated by appropriate choices of mobile phase, stationary phase or both.

 - Linear chromatography:
 - K_c is constant, does not change with solute concentration
 - Gaussian-type peak
 - Retention times independent of amount of analyte injected

\[
A_{\text{mobile}} \leftrightarrow A_{\text{stationary}}
\]

\[
K_c = \frac{(a_A)_S}{(a_A)_M}
\]

\[
K_c = \frac{c_S}{c_M} = \frac{n_s}{n_M} \frac{V_s}{V_M}
\]
Retention Time

- Retention time depends on K_C
- t_M: time for the unretained species, dead or void time
- t_S: time spent in the stationary phase

\[t_R = t_M + t_S \]
\[v = \frac{L}{t_R} \]
\[v = \text{average linear velocity of solute migration} \]
\[u = \frac{L}{t_M} \]
\[u = \text{average linear velocity of mobile phase} \]
\[\bar{v} = u \times \frac{1}{1 + K_C V_S / V_M} \]
Retention/Capacity Factor

- Used to compare migration rates of solutes in columns
- Does not depend on column geometry or volumetric flow rates
- Can be calculated from measured retention times
- For example, for a solute A, the capacity factor k_A is given by:

$$k_A = \frac{K_AV_S}{V_M}$$

$$\nu = u \times \frac{1}{1 + K_AV_S/V_M} = u \times \frac{1}{1 + k_A}$$

$$\frac{L}{t_R} = \frac{L}{t_M} \times \frac{1}{1 + k_A}$$

$$k_A = \frac{t_R - t_M}{t_M}$$

$t_R - t_M$: adjusted retention time

Relative Migration Rates: Selectivity Factor

- The selectivity factor (α) compares migration rates

$$\alpha = \frac{K_B}{K_A}$$

$$\alpha = \frac{k_B}{k_A}$$

- For two solutes A and B, B being the more strongly retained species, α is given by:

$$\alpha = \frac{(t_R)_B - t_M}{(t_R)_A - t_M}$$
Band Broadening and Column Efficiency

- Band broadening affects the efficiency of the chromatographic column.
- Why do bands become broader as they move down the column?

- Rate theory of Chromatography:
 - random-walk mechanism
 - Although the general direction of migration is towards the bottom of the column, random walk is superimposed on the general movement forward.
 - Random motion during migration explains the shape and the breath of chromatographic peaks –
 - Gaussian Distribution around mean retention time.

- Residence time in either phase is irregular-
 - a few particles travel faster because they are accidentally included in the mobile phase most of the time. Some particles lag behind because they are incorporated in the stationary phase for a time longer than the average.
- Width of band/zone is directly related to the residence time and inversely related to the velocity of the mobile phase flow.

Tailing and Fronting

- Tailing: occurs when the distribution constant varies with concentration.
- Fronting: occurs when the amount or sample introduced is too large.
Quantitative Description of Column Efficiency

- Column efficiency is expressed in terms of plate height (H) and plate count (the number of theoretical plates (N)).
- Efficiency increases as N becomes greater and H becomes smaller.
- N and H:
 - From Martin and Synge theory / Plate theory (1941)
 - Chromatographic column similar to distillation column made up of many discrete narrow layers / theoretical plates
 - Equilibrium of the solute between mobile and stationary phase within each theoretical plate
 - Movement: step-wise transfer of equilibrated mobile phase from one plate to the next
- N: few hundred to several hundred thousand
- H: ~ (tenth to 1/10000) mm

\[N = \frac{L}{H} \]

Definition of Plate Height

- Variance (of the band distribution) per unit length of column (linear distance in cm)
- Length of column that contains a fraction of the analyte that lies between L and L-\(\sigma \)

\[H = \frac{\sigma^2}{L} \]
Experimental Evaluation of H and N

\[N = 16 \left(\frac{t_R}{W} \right)^2 \]

(1) \(\tau = \frac{\sigma}{L} + \frac{t_R}{4} = \frac{W}{4} \)

(2) \(\sigma = \frac{LW}{4t_R} \)

(3) \(H = \frac{\sigma^2}{L} = \frac{LW^2}{16t_R^2} \)

(4) \(N = 16 \left(\frac{t_R}{W} \right)^2 \)

Area of triangle \(\sim 96\% \) of total area

96\% of the area is comprised within \((\pm 2\sigma) \), \(W = 4\tau \), substitute in (1)

Kinetic Variables Affecting Column Efficiency

TABLE 26-2 Variables That Influence Column Efficiency

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Usual Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear velocity of mobile phase</td>
<td>(u)</td>
<td>cm s(^{-1})</td>
</tr>
<tr>
<td>Diffusion coefficient in mobile phase*</td>
<td>(D_M)</td>
<td>cm(^2) s(^{-1})</td>
</tr>
<tr>
<td>Diffusion coefficient in stationary phase*</td>
<td>(D_S)</td>
<td>cm(^2) s(^{-1})</td>
</tr>
<tr>
<td>Retention factor (Equation 26-12)</td>
<td>(k)</td>
<td>unitless</td>
</tr>
<tr>
<td>Diameter of packing particles</td>
<td>(d_p)</td>
<td>cm</td>
</tr>
<tr>
<td>Thickness of liquid coating on stationary phase</td>
<td>(d_f)</td>
<td>cm</td>
</tr>
</tbody>
</table>
Kinetic Variables Affecting Column Efficiency

- Generally, efficiency studies are performed by determining H as a function of mobile-phase velocity

Effect of Mobile Phase: van Deemter Plot
- Minimum H for LC occurs at velocity too low for practical purposes

Theory of Band Broadening
- A: Eddy diffusion coefficient, describes multiple path effects
- B: Longitudinal diffusion coefficient
- C_S and C_M: mass-transfer coefficients for the stationary and mobile phases

$$H = A + \frac{B}{u} + C_S u + C_M u$$

Approximation

![van Deemter plot](image)

![Theory of Band Broadening](image)
Theory of Band Broadening

• Multipath term A: Eddy Diffusion
 – the multitude of pathways available for a molecule
 – Different Lengths of pathways lead to different residence time in the column for same molecule
 – Not significant at low velocities where ordinary diffusion effectively averages effects of eddy diffusion
 – Stagnant pools of mobile phase add slow the exchange process

\[H = A + \frac{B}{u} + C_A u + C_M u \]

Theory of Band Broadening

• Longitudinal diffusion term B/u
 – Molecules diffuse form region of high concentration to regions of low concentration
 – Rate proportional to concentration differences and to diffusion coefficient \(D_M \) of the species.
 – Migration from center to either side (opposed to the direction of flow)
 – Important in GC, less significant in LC
• The Stationary-Phase Mass-Transfer Term $C_s u$
 – For immobilized liquid stationary phase
 – The mass transfer coefficient is directly proportional to the square of the thickness of the film on the support particle (d_f) and inversely proportional to the diffusion coefficient D_s of the solute in the film.
 – Reduces the average frequency at which the analyte reach the liquid-liquid interface where transfer to the mobile phase occur
 – With thick film, molecules must travel father to reach the surface and with smaller diffusion coefficients, they travel slower → slower rate of mass transfer and increase in plate height.

• Mobile-Phase Mass-Transfer Term $C_M u$.
 – C_M is inversely proportional to the diffusion coefficient of the analyte in the mobile phase D_M.
 – for packed column is proportional to the square of the particle diameter of the packing material (d_p)
TABLE 26-3 Processes That Contribute to Band Broadening

<table>
<thead>
<tr>
<th>Process</th>
<th>Term in Equation 26-23</th>
<th>Relationship to Column* and Analyte Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple flow paths</td>
<td>A</td>
<td>$A = 2\lambda d_p$</td>
</tr>
<tr>
<td>Longitudinal diffusion</td>
<td>B/u</td>
<td>$B/u = \frac{2\gamma D_M}{u}$</td>
</tr>
<tr>
<td>Mass transfer to and from stationary phase</td>
<td>$C_S u$</td>
<td>$C_S u = \frac{f(k)d_t^2}{D_S} u$</td>
</tr>
<tr>
<td>Mass transfer in mobile phase</td>
<td>$C_M u$</td>
<td>$C_M u = \frac{f'(k)d_p^2}{D_M} u$</td>
</tr>
</tbody>
</table>

λ and γ: constants depending on quality of packing
Optimization of Column Performance

- Reduce band broadening
- Alter relative migration rates of solutes
- Reduce separation time

- Zone broadening is increased by kinetic variables that increase plate height
- Migration rates are varied by changing variables that affect retention and selectivity factors

Resolution

- How far apart two bands are relative to their widths
- Quantitative measure of the ability of the column to separate two analytes

\[
R_S = \frac{\Delta Z}{W_A + W_B} = \frac{2\Delta Z}{W_A + W_B} = \frac{2(t_R^B - t_R^A)}{W_A + W_B}
\]

\[
R_S = \frac{\sqrt{N}}{4} \left(\frac{k}{1+k} \right)
\]

- \(k \): average of \(-k_A\) and \(-k_B\)
- \(\alpha \to 1 \)
Variables that Affect Column Performance

- Kinetic factors (1st term)
 - Related to N
- Thermodynamic factors (2nd and 3rd terms)
 - 2nd term: depends solely on properties of the solutes for a given mobile-phase and stationary-phase combination
 - Third term: depends on properties of both the solute and the column
- α, k, N or H

General Elution Problem

- Optimization ($k \sim 1$ to 5) for solutes with shorter retention times, generally leads to very long retention time for the other solutes and excessive broadening
- Solution: decrease k during the separation
 - Gradient elution (as opposed to Isocratic elution)
- In GC: temperature gradient is applied
Application of LC for Bio-analysis