Components of Optical Instruments

Chapter 7 III
UV, Visible and IR Instruments
Grating Monochromators

- Principle of operation:
 - Diffraction
- Diffraction sources:
 - grooves on a reflecting surface
- Fabrication:
 - Master Grating is mechanically ruled on a flat polished surface with a diamond, to produce identical closely spaced parallel grooves
- Replica grating:
 - are cast using 'liquid plastic'. Then they are coated with a reflecting material

Echellette Grating

- The grating is blazed/grooved to produce broad faces used for reflection and narrow unused faces.
- How does it work?
 - Maximum constructive interference between two beams originating from two adjacent faces occurs when the difference in path travelled is equal to one wavelength or an integral multiple of the wavelength.
 - Different wavelengths are diffracted at different angles.

\[
\begin{align*}
n\lambda &= (CB + BD) \\
CB &= d \sin i \\
\angle CAB &= \angle i \\
BD &= d \sin r \\
\angle DAB &= \angle r
\end{align*}
\]

\[
n\lambda = d (\sin i + \sin r)
\]
• Holographic grating:
 – two laser beams are focused on a photosensitive surface to create grooves
• Concave Gratings
 – Lines ruled on a concave spherical mirror
 – Do not need internal collimating and focusing optics
• Typical sizes:
 – 1- 10 cm, 300 to 2000 grooves/mm

Performance Characteristics

• Dispersion
 – Determines the ability of a monochromator to separate different wavelengths
 – Angular dispersion
 \[
 \frac{dr}{d\lambda} = \frac{n}{d \cos r}
 \]
 – Linear dispersion if \(r \) is small < 20º
 \[
 D = \frac{dy}{d\lambda} = \frac{fdr}{d\lambda} = \frac{d\lambda}{fdr} = \frac{d \cos r}{nf}
 \]
 \[
 D^{-1} = \frac{d}{nf}
 \]
• Resolving Power
 – Determines the limit of the ability to separate adjacent images that have a slight difference in wavelength
 – Better for longer gratings, smaller d, higher n

 \[R = \frac{\lambda}{\Delta \lambda} \]
 \[R = nN \]
 \[N : number \ of \ grooves \]

• Light Gathering Power
 – Determines the ability of the monochromator to collect radiation from the entrance slit
 – F-number F, speed

 \[F = \frac{f}{d} \]
 \[f: focal \- length \ of \- mirror \ or \- lens \]
 \[d: diameter \ of \- mirror \ or \- lens \]

Echelle grating

• Two dispersing elements in series
 – Echelle grating + low resolution prism or grating

• \(i \geq 63^\circ 26 \)

 \[n\lambda = 2d \sin \beta \]
 \[D^{-1} = \frac{d \cos \beta}{nf} \]
C-3 Monochromators Slits

- Entrance and Exit slit
 - Rectangular images of the entrance slit are produced on the focal plane that contains the exit slit
- Effect of Slit Width on Resolution
 - Bandwidth: span of monochromator settings (in units of wavelength or cm$^{-1}$) needed to move the image of the entrance slit across the exit slit
 - Effective bandwidth ($\Delta \lambda_{\text{eff}}$) (spectral bandpass or spectral slit) is the range of wavelengths at the exit slit at a given monochromator setting. Is equal to half the bandwidth when the two slits are equal.

$$D^{-1} = \frac{\Delta \lambda}{\Delta \nu}$$

$$\Delta \lambda_{\text{eff}} = wD^{-1}$$

w: slit width

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Echelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length</td>
<td>0.5 m</td>
<td>0.5 m</td>
</tr>
<tr>
<td>Groove density</td>
<td>1200/mm</td>
<td>79/mm</td>
</tr>
<tr>
<td>Diffraction angle, β</td>
<td>10°22'</td>
<td>63°26'</td>
</tr>
<tr>
<td>Order n (at 300 nm)</td>
<td>1</td>
<td>75</td>
</tr>
<tr>
<td>Resolution (at 300 nm), $\lambda/\Delta \lambda$</td>
<td>62,400</td>
<td>763,000</td>
</tr>
<tr>
<td>Reciprocal linear dispersion, D^{-1}</td>
<td>16 Å/mm</td>
<td>1.5 Å/mm</td>
</tr>
<tr>
<td>Light-gathering power, F</td>
<td>$f/9.8$</td>
<td>$f/8.8$</td>
</tr>
</tbody>
</table>
E. Radiation Transducers

E-1 Introduction

• Early detectors in Spectroscopy
 – Human eye
 – Photographic plates
 – Films

• Properties of an Ideal Transducer
 – High sensitivity
 – High signal to noise ratio
 – Constant response over a wide range of wavelengths
 – Fast response
 – Response directly proportional to radiant power
 – Low dark current

\[S = kP \]
\[S = kP + k_d \]
General Classification of Transducers

• Photon transducers: photoelectric / quantum detectors
 – Photoemissive: Photon \rightarrow emission of electrons \rightarrow photocurrent
 – Photoconductive: Photon \rightarrow electron to CB \rightarrow enhanced conductivity
 – Used in UV, Vis and near IR

• Heat transducers
 – Average radiant power \rightarrow thermal conduction
 – Mainly used in the IR region

E-2 Photon Transducers

• **E-2-1 Vacuum Phototubes**
 – Photoelectric effect
 – Photoemissive surfaces
 – Operational Amplifier
Photoemissive surfaces

- **Bialkali**: most sensitive
 - K/Cs/Sb (117)
- **Red-sensitive**:
 - Ag/O/Cs (S-11):
- **Flat-response**:
 - Ga/As (128): flat response

E-2-2 Photomultiplier Tubes

- **Components**
 - Photocathode surface
 - Dynodes: maintained at increasing potential relative to cathode
 - Anode
 - Operational Amplifier (OP AMP)
- **Nature of signal from a PMT**
 - a series of charge packets
 - may have 10^6 electrons and be 5 ns wide
 - Output is a current
 - Very sensitive in UV and vis
 - Fast response

\[
\text{anode.pulse sec}^{-1} \times 10^6 \frac{\text{electrons}}{\text{anode.pulse}} \times 1.6 \times 10^{-19} \frac{\text{coulomb}}{\text{electron}} = 1.6 \times 10^{-7} \frac{\text{coulombs}}{\text{sec}}
\]
Dark Current in Photomultipliers

- Sensitivity limited by dark current
- Origin of dark current (output signal when no light is present)
 - Thermal emission*: spontaneous emission of electrons
 - Cold-Field Emission: spontaneous emission due to sharp surfaces/edges in the presence of high electrical field
 - Radioactivity
 - Ohmic leakage: resistance in the tube will cause an IR drop, thus flow of current

Silicon Photodiode Transducers

- Reverse-biased pn junction on a silicon chip
- ER generates holes and electrons in depletion layer
- Less sensitive than photomultiplier
- Spectral region (190 - 1100 nm)
E-3 Multichannel Photon Transducers

- Allows the simultaneous detection of all resolution elements of the spectrum
- Types
 - Photodiode arrays (PDA)
 - Common number of diodes: 1024
 - Charge-Transfer Devices (CTDs)

E-4 Photoconductivity Transducers

- Used in the near IR region (0.75 µm - 3 µm).
- Semiconductors whose resistance decreases when they absorb radiation of wavelength between 0.75 µm and 3 µm.
- Change in conductivity is measured.
- Sulfides, Selenides, Stibnides of lead, cadmium, gallium and indium.
E-5 Thermal Transducers

- Operational principle:
 - IR radiation raises temperature of a black body with low heat capacity.
 - Temperature increase is a measure of radiant power.
 - Typical radiant power in IR: 10^{-7} to 10^{-9} W.
 - Typical temperature changes: order of 0.001 K.
- Problem: thermal noise (thermal radiation emitted by other surfaces).
 - Housing of detector must be evacuated and shielded from thermal radiation from other surfaces.

Examples of Thermal Transducers

- THERMOCOUPLES
 - Couple: two identical pieces of metal connected by a dissimilar metal
 - e.g. Bi and Sb
 - Potential difference will develop at the junction due to differences in temperature.

- BOLOMETERS (Thermistors)
 - Resistance thermometer made of Pt, Ni or semiconductors.
 - Principle of operation: large change in resistance as a function of temperature

- PYROELECTRIC TRANSDUCERS
 - Used in FT IR, which requires fast response
 - Pyroelectric materials: dielectric material with a long lived polarized state.
 - Principle of operation: temperature dependence of polarization in absence of electrical field is a measure of radiant power.
 - IR \Rightarrow temperature change \Rightarrow charges distribution change \Rightarrow measurable current in the external circuit.
 - Pyroelectric material: Triglycine sulfate $(\text{NH}_2\text{CH}_2\text{COOH})_3\cdot\text{H}_2\text{SO}_4$.

G. Fiber Optics

- Fine strands of glass or plastic
 - Diameter: 0.05 \(\mu \text{m} \)-0.6 cm
- Transmits Radiation over long distances
 - Used for transmitting images (medicine) and for illumination
- Operational Principle
 - Total Internal Reflection

\[
\text{Numerical aperture} = n_3 \sin \theta = \sqrt{n_1^2 + n_2^2} \\
\text{if } n_1 > n_2 > n_3
\]