PHL309 Logic, Language, and Thought Professor: Craig DeLancey
Office: Marano 212A

Past Assignments
28 January
Read the selection from Aristotle. Come to class prepared to explain what Aristotle's view is on the infinite.

2 February
Reading. Read the selection from Galileo's Two New Sciences: First Day, from pages 11 [49] to 28 [67].

I emailed to you the prefered translation. If you didn't get that email let me know.

Also, a fair translation is freely available here.

4 February
Reading. Read from Galileo's Two New Sciences: First Day, from pages 28 [67] to 45 [83].

9 February
We are going to finish our discussion of Galileo's views on infinity. We'll also discuss some other concerns about infinity and infinitesimals that people raised.

To add to our ability to think about these things, we'll also learn a bit of set theory in the next weeks. You can consider reading chapter 19 of A Concise Introduction to Logic.

13 February
Read sections 19.1 and 19.2 of A Concise Introduction to Logic to get some background in set theory.
16 February
Homework! Working on your own, write up your answers to the following questions, and hand them in at the beginning of class.
  1. For each claim, identify if it is true or false.
    a. {a} ∈ {a, b, c}
    b. {a} ∈ {{a}, {b}, {c}}
    c. 2 ∈ {1, 2, 3}
    d. 2 ∈ {{1}, {2}, {3}}
  2. For each of these pairs: are they identical? (You can answer "yes" or "no".)
    a. {1} and {{1}}
    b. {2, 3, 1} and {1, 2, 3}
    c. {} and {{}}
    d. {7, {a}, 9} and {{a}, 9, 7}
  3. Give an example of a proper subset of each of the following sets.
    a. {a, b, c}
    b. {1, 2}
    c. {{a}, {b}, {c}}
  4. For each of the following sets, list all of its subsets. (Remember: if we do not require that the subsets be proper, you can include as a subset the set itself. Remember also our rule, if a set has n things in it, then it has 2n subsets.)
    a. {1}
    b. {a, b}
    c. {{}}
    d. {c, d, e}
  5. Assume these sets continue in the simplest way as listed. For problems a and b, can you give an example of a function that relates the first to the second in a 1-to-1 correspondence (an on and onto function that would also be a function if it went backwards)? For problem c, can you find a function that is on and onto, even if it were not 1-to-1? (You can answer these using some basic arithmetic -- no need to get fancy; for example, the function relating the naturals to the even numbers would look like: f(x) = 2x.)
    a. {2, 4, 6, 8, 10....} and {200, 400, 600, 800, 1000....}
    b. {1, 2, 3, 4, 5....} and {1, 3, 5, 7, 9, ....}
    c. {1, 2, 3, 4, 5....} and {1}
    (Note that for c, the second set contains only one element, namely the number one.)
18 February
For the next several days we'll be discussing Kant. I'll post our class notes soon.

2 March
Here are our class overheads for Kant.

Due at the beginning of class: A quick homework. Give an example of a sentence for each of Kant's four kinds: a priori, a posteriori, synthetic, analytic. Each sentence example must be your own (no credit for an example we used in class). Then, can you give an example of an analytic a proiri sentence; an example of a synthetic a posteriori sentence; and a synthetic a priori sentence. (If you disagree with Kant's notions, consider yourself as trying to find examples that he would accept.)

4 March
Start reading Logicomix, if you got it. It is also on reserve in the library, so you can read it there! It's fun and a quick read, and the glossary is really quite good also. (The glossary is a comic also.) You'll enjoy it, I promise.

11 March
Midterm. Possible questions include:
  • Reconstruct one of Galileo's arguments that we cannot have an actual infinity or that we cannot have actual infinitesimals. Make your reconstruction an explicit reductio ad absurdum argument, in which you make clear the contradiction, and the premise we reject because of the contradiction.
  • Answer some basic questions about set membership, subsets, powersets, the definition of cardinality.
  • What is Cantor's Claim (about some proper subsets of infinite sets)? How we can use Cantor's Claim (assuming it works) to answer some of Galileo's arguments?
  • Reconstruct Cantor's Diagonal Argument to prove that the cardinality of the reals is greater than the cardinality of the natural numbers.
  • What is Cantor's Theorem?
  • How does Cantor's Theorem, and the claim that a set exists if we can determine its members, result in Cantor's Antinomy.
  • Give an example of a sentence for each of Kant's four kinds: a priori, a posteriori, synthetic, analytic. Give an example of a sentence for each of Kant's complex kinds: analytic a priori, synthetic a priori, synthetic a posteriori.
Remember that for a refresher on set theory, you can read sections 19.1 and 19.2 of A Concise Introduction to Logic.
13 March
Review of test. Then: Hilbert's questions. Completeness, soundness, consistency, decidability.

Read chapters 1 and 2 of Casti's Godel if you purchased it.