(1) The purpose of the diagram below is to illustrate the identity $T[G] = T \ast G \ast T^{-1}$: indeed you can see how the sequential application of translation T^{-1}, glide reflection G, and translation T to the point A is equivalent to applying the glide reflection $T[G]$, the *image* of the glide reflection G under the translation T.

Repeat the process to the given point B.
(2) The purpose of the diagram below is to illustrate the identity \(G[T] = G\ast T\ast G^{-1} \): indeed you can see how the sequential application of glide reflection \(G^{-1} \), translation \(T \), and glide reflection \(G \) to the point A is equivalent to applying the translation \(G[T] \), the image of the translation \(T \) under the glide reflection \(G \).

Repeat the process to the given point B.
(3) Determine the following glide reflections: \(T_1 \ast G, T_2 \ast G, T_3 \ast G, \)
\(T_1[G], T_2[G], T_3[G]. \)

What observation could you make based on your answers above?
(4) Determine the composition $G \ast T$ of the translation T followed by the glide reflection G empirically, by finding $G \ast T(A)$ and $G \ast T(B)$.
(5) Show, using the unit A, that the horizontal translation \(t \) may be obtained in (at least) two different ways as composition of other isometries: \(G_2 \cdot G_1^{-1} \) (\(G_1^{-1} \) followed by \(G_2 \)) and \(G_3^{-1} \cdot T \cdot G_1^{-1} \) (\(G_1^{-1} \) followed by \(T \) followed by \(G_3^{-1} \)). Are the two methods really different? Comment as appropriate.