Factors Regulating Eye Blink Rate in Young Infants

Leigh F. Bacher*

ABSTRACT

Purpose. The purpose of this work was to investigate whether individual differences in eye surface area are related to the rate of spontaneous eye blinking (SB) in young infants. Rate of SB was also compared with the rate of gaze shifts.

Methods. Forty-four 4-month-old infants were observed under controlled conditions for 4 to 6 min. SB, eye surface area, gaze shifts, and various background variables were measured.

Results. Individual differences in the rate of SB and in eye surface area were wide. Neither the eye surface area nor the rate of gaze shifting was related to the rate of SB in young infants. However, when SB do occur, they are more likely to coincide with a shift in gaze than immediately precede or follow a shift in gaze.

Conclusions. Eye surface area does not explain individual differences in the rate of SB in infancy. This and other recent work suggests that central factors may play a more prominent role in the mechanisms of SB early in human development than previously reported and that the mechanisms regulating the rate of SB seem to be developmentally continuous with those of adults. To the extent that the rate and timing of SB reflects developing neurological systems, SB may be useful clinically.

(Optom Vis Sci 2010;87:337–343)

Key Words: spontaneous eye blinking, palpebral fissure, eye surface area, gaze shifts, infants

Human infants exhibit low rates (<4 per min) of spontaneous eye blinking (SB).1,2 From this low rate of SB in infancy, the rate increases gradually to ~15 to 30 per min in adulthood.3,4 Current explanations of the low rate of SB in infants compared with adults have focused primarily on the pre-corneal tear film. The lipid layer of the tear film has been a focal point because it retards evaporation and stabilizes the tear film.6 In infants, the lipid layer of the tear film is thicker and more stable than in adults,7,8 and the amount of exposed eye surface area is smaller. After a blink, it is believed that evaporation leads to eye surface cooling, which triggers a blink that in turn restores the tear film.9,10

In contrast, research on adults has identified central and peripheral mechanisms that regulate the rate of SB. Peripheral factors that are believed to affect rate of SB include tear film stability, thickness of the lipid layer, and rate of eye drying.6,9 Environmental factors such as relative humidity, temperature, and pollutants affect the rate of SB indirectly through changing the conditions at the eye surface.11

With respect to central mechanisms of SB, investigations in adult human and nonhuman primates of have identified a role for dopamine (DA) systems.12–15 Although a few researchers have failed to demonstrate a relationship between SB and DA func-tion,16 converging evidence in adults for a role for DA involvement in SB rate comes from a range of fields including psychopathology,17–20 biological bases of personality,21–23 and cognitive research.24–26 The specific components of the DA system contribute to SB regulation have not been identified, and furthermore, it is not known whether the mechanisms underlying SB are the same for infants and adults.

This study addresses two objectives to identify factors that contribute to the rate of SB early in human development. The first objective was to test whether eye surface area is linked to the rate of SB in young infants. Others have asserted that the combination of a smaller palpebral fissure and thicker tear film of infants contrib-
formed consent was obtained from every parent. Proved by the University’s institutional review board, and in-the Declaration of Helsinki. Procedures were reviewed and approved by the local obstetrician/gynecologist, and letters sent to parents found in visits to the local hospital maternity ward, well-baby visits to the of socioeconomic backgrounds, were recruited through brochures, and so contribute to surface cooling, thus increasing the rate of SB by central mechanisms or by changes at the surface of the eye. For example, shifts in gaze might disrupt tear film stability and so contribute to surface cooling, thus increasing the rate of SB for infants who express more shifts in gaze. Previous work in adults shows reductions in tear film stability with changes in vertical direction of gaze. Other work, however, presents evidence that the tear film remains stable between blinks even during changes in gaze direction. Given the potential for developmental differences, the analysis in infants is warranted.

This study investigates several potential sources of individual differences in the rate of SB early in human development. The presence or absence of relationships between SB and eye surface area and gaze shifting addresses the contributions of peripheral and central sources of SB regulation. Understanding the relative contributions of peripheral and central mechanisms of SB in human infants is important most basically for helping maintain a healthy eye surface. Additionally, to the extent that the rate and timing of SB reflects nascent neurological systems, SB may be useful clinically. For example, researchers have examined patterns of SB and attention in early childhood to help understand the neural deficits of autism.

METHODS

Participants

Forty-four, healthy and full-term infants participated (19 females, 25 males) (mean = 118.5 ± 6.5 d). Infants, from a variety of socioeconomic backgrounds, were recruited through brochures, visits to the local hospital maternity ward, well-baby visits to the local obstetrician/gynecologist, and letters sent to parents found in the birth announcements. Our procedures adhered to the tenets of the Declaration of Helsinki. Procedures were reviewed and approved by the University’s institutional review board, and informed consent was obtained from every parent.

Procedure

After obtaining consent, the infant was placed on a scale to estimate body weight (clothes on) and was seated in a modified infant car seat facing a three-sided arena. Two concealed cameras (one digital and one charge-coupled device) were positioned at 140 cm to the infant’s face, with 99-cm distance between the two lenses. (Further details of equipment and configuration have been reported).

The observation consisted of two primary phases (quiet baseline and stimulus presentation) that were designed as part of a larger, psychological study. Measures reported here are taken from the baseline period with the exception that some samples of eye surface area were taken from the stimulus presentation period to find the best images. Each phase lasted 3 to 6 min. The infant was not directly addressed or touched unless she or he became fussy. All periods of infant fussiness were excluded from analyses. During the visit, each parent was asked a series of questions about her or his infant’s health and caregiving practices.

Measures

Spontaneous Eye Blinking

Briefly, trained coders reviewed video records in slow motion and frame-by-frame to identify valid SB. Eye closures associated with the following were not included in the analysis: yawns, sneezes, startles, coughs, gronimes, fussiness, or hand movements toward face or mouth. Also, asymmetrical and slow (>1/3 s) blinks were not included. The infant must also have had at least 3 min of continuous data (or two, 2 min segments of data) to be included in analyses. To assess interrater reliability in identifying valid blinks, two people coded 27% of the cases and were blind to each other’s codes. A version of percent agreement was used. The estimate of interrater reliability was 87%. This value may underestimate agreement between coders because it was based on two coders agreeing to both the time (within 1 s) of the eye closure and the type of eye closure. This method for reliably identifying spontaneous eye blinks in infants has been reported.

The time between successive blinks (sec) during the baseline period was averaged to gain each infant’s mean interblink interval (IBI). These values were base-10 log transformed to correct a strong skew.

Eye Surface Area

Because infants’ heads were not restrained, digital images were reviewed to select images for analysis in which the infant’s face was turned toward the camera. Digital images were analyzed using LabVIEW (version 7.1) image analysis routines (National Instruments, Austin, TX; www.ni.com). To measure the planar area of the eye surface exposed, the user traced the outline of the eye surface along the inside edges of the lids using the computer’s mouse. This method slightly underestimates the eye surface area given that the lids are curved and the edges drawn using the mouse are a series of short, straight lines. Image enhancement routines allowed the user to adjust images to maximize the detection of the edges. Four measurements from each infant were averaged. Measurements were highly similar, \(r(44) = 0.91 \). Reasons for slight variations include changes in eye position, head position, and degree of eyelid opening.

Rate of Gaze Shifts

Trained assistants analyzed the first 2 min of the baseline phase using a combination of slow motion and frame-by-frame analysis of the analog video recordings. The first 2 min was sufficient to analyze the typical rate of changes in gaze for infants given that many such movements may be sampled during that period of time. Although patterns of attention fluctuate over time and transient patterns occur in new environments, a 2-min period of observation in a stable environment extends well beyond the period of these fluctuations. A time sampling
approach was used to estimate the frequency of gaze shifts. Presence or absence of any detectable change in gaze was noted for each 1-s bin (intrater reliability estimate was 92%). The rate of eye movement is indicated by the number of bins per min with a change in gaze.

During baseline, no specific stimulus objects were presented. The three-sided arena (183 cm high) was covered in fabric of uniform, light color. Infants could turn their heads sharply to their right to see their parent (seated next to the infant or holding the infant).

RESULTS

Preliminary Analyses

Samples of eye surface area were examined to confirm that no systematic differences in measures occurred when those measurements were taken further apart in time. The standard deviation of the four area measures and the time (minutes) between the measurements were not related, $r(44) = 0.022, p = 0.89$.

Preliminary analyses were conducted on a set of variables that could represent potential confounds. No sex differences were found in eye surface area, IBI, rate of eye movement, or current body weight. The results for these one-way analysis of variances (ANOVA) were as follows: eye surface area, $F(1,42) = 0.88, p = 0.35$; IBI, $F(1,42) = 2.61, p = 0.14$; eye movement, $F(1,42) = 0.07, p = 0.80$; and body weight, $F(1,42) = 1.37, p = 0.25$. None of the following variables were significantly correlated to eye surface area: weight at 4 month, time of day, age in days, hours since last feeding, and hours since last sleeping (all r values were 0.26 to 0.03). Birth weight exhibited a marginally significant, negative correlation with eye surface area: $r = 0.29, p = 0.054$. (Fig. 2 includes birth weight data.)

One-way ANOVAs were used to test whether the eye surface area was related to the following: use of medications (yes or no), type of caregiving (in home or out of home), and method of feeding (breast, bottle, or both). None of the categorical variables were related to eye surface area (p values were between 0.53 and 0.64). Method of feeding approached statistical significance with eye surface area: $F(2,43) = 2.9, p = 0.07$.

Individual Differences

Individual differences in surface area were wide: range of 117.4 to 739.6 mm² (mean = 390.7 ± 116.9). Wide individual differences were also found in IBI (Fig. 1). The average eye surface area of the 25% of infants with the greatest values (mean = 532.3 mm²) was twice as large as that of the 25% of infants with the smallest eye surface area (mean = 247.4 mm²). For IBI, the fastest 25% of infants blinked just over 2.5 times faster than infants with the slowest rate of SB. These SB rates are consistent with those observed in previous studies of infants.10,32,33

Relationship Between IBI and Eye Surface Area

Infants were divided into three groups based on length of IBI during the baseline phase. This was done by identifying the lower third (n = 14, fast rate of SB), middle third (n = 16), and upper third (n = 14, slow) of IBIs. All subsequent analyses of IBI use the log transformed values from the baseline phase.

One-way ANOVA was used to test whether differences in eye surface area were apparent for infants who blinked at different rates (slow, intermediate, and fast). Infants’ eye surface area was not related to IBI, $F(2,41) = 1.25, p = 0.30$. The scatterplot of eye surface area and IBI (birth weight data are indicated by the size of the symbols) clearly illustrates the absence of relationships among these variables (Fig. 2).

Relationship Between IBI and Rate of Gaze Shifts

One potential source of influence on the rate of SB is the rate of gaze shifts. As in the previous analysis, infant data from the baseline period were grouped by rate of SB by identifying the upper, middle, and lower thirds of the range of IBIs. One-way ANOVA

![figure](image-url)
showed that IBI (slow, intermediate, and fast) was not related to rate of gaze shifts, F(2,41) = 1.8, p = 0.17 (Fig. 3). One-way ANOVA also showed that the rate of gaze shifts (slow, n = 14; intermediate, n = 16; fast, n = 14) was not related to eye surface area, F(2,41) = 0.044, p = 0.96. Infants were grouped following the same pattern as used for creating groups based on IBI. The sample size did not permit a between subjects ANOVA of the effects of gaze shift rate (slow, medium, and fast) and IBI (slow, intermediate, and fast) on eye surface area. However, a one-way ANOVA using area as the dependent variable, IBI groups as the independent variable, and gaze shift rate as a covariate yielded no significant effects: IBI, F(2,40) = 1.2, p = 0.32, and gaze shifts, F(1,40) = 0.01, p = 0.93.

Temporal Relationship Between SB and Shifts in Gaze

To investigate the timing of SB with respect to shifts in gaze, a repeated measures ANOVA for successive 1-s intervals before and after SB was conducted. For an infant’s data to be included, at least three SB with five intervals before and 5 intervals after an SB was required. Of the 44 infants, 35 infants met this criterion. From each infant, three, or four if available, SBs were analyzed. For the selected SBs, the number of shifts in gaze for each 1-s interval before and after the SB was tallied. (Recall that a time sampling method was used to record shifts in gaze so that each 1-s bin has a binary value of 1 or 0 depending on whether a shift in gaze was observed.) For the interval in which the SB occurred, a gaze shift was tallied only if it co-occurred with the SB (i.e., gaze at the start of the eyelid closure for a valid SB was shifted by the time the eyelids were parted at the end of the SB). The variable, therefore, is the number of gaze shifts noted for each 1-s bin before, during, and after the SB. The maximum number of shifts per bin for each infant is 4 and the minimum is 0. The eye movements investigated here are large amplitude shifts that result in a new direction of gaze, not small adjustments or individual saccades that may occur during eye closure.34

The ANOVA revealed significant variation over the seconds surrounding an SB, F(10,340) = 12.6, p < 0.001 with significant

FIGURE 2.

Log IBI by eye surface area (mm²); symbols reflect quartiles of infant birth weight (larger bubbles indicate larger birth weight).

FIGURE 3.

Left: Scatterplot of gaze shift rate (movements per min) by log IBI. Right: Mean (SD) gaze shift rate for three groups of infants who blinked at different rates.
the tear film thickness is uniform, so this test of the relationship and 6 months have similar tear film thicknesses, the wide individual differences in SB at 4 months can not be explained by tear film thickness either. Nevertheless, given that tear film thickness was not measured in this study; further investigation is needed to confirm the implication regarding the role of tear film thickness of this study.

A second primary finding was that infants who expressed different rates of gaze shifting did not show systematically different rates of SB. Absence of a tight relationship between the rate of gaze shifts and SB argues against a hypothesis that the frequency of eye movements might disrupt the tear film and in turn promote more rapid surface cooling and thus trigger more SB. Although the rates of gaze shifting and SB were unrelated, the timing of SB indicated some coordination with gaze shifts. In the seconds preceding and following a spontaneous eye blink, the relative number of shifts in gaze was greatest during the blink. This temporal coordination observed between gaze shifts and SB has been demonstrated in adults. Such coordination may shorten the loss of visual information compared with when these eye movements occur in succession. In adults, this coordination has been attributed to higher order mechanisms rather than mechanical features or stimulus features and also affects eye movement and visual processing.

Three implications of these results are offered. First, they address the contributions of peripheral and central mechanisms underlying individual differences in rate of SB in infants. The absence of effects on SB by two prominent components of the eye surface (i.e., eye surface area, tear film thickness) in combination with evidence that the rate of SB in infants can be manipulated experimentally, indicates that central mechanisms may play a more prominent role in the regulation of SB during early infancy than previously believed.

A second implication is that the neural systems for coordinating SB and ongoing patterns of visual attention are present early in the first year of human maturation. A third implication of these results is that the mechanisms regulating SB in infants seem to be similar to that of adults. Taken together, the results for infants and adults show the following parallels: (a) similar sensitivity to eye surface area to the rate of SB, (b) wide individual differences in rate of SB, (c) eye surface area unrelated to SB rate, (d) temporal coordination between SB and gaze shifts, and (e) malleability of the rate of SB through experimental manipulation. These similarities provide evidence for developmental continuity in the mechanisms that regulate SB.

Although these results do not speak directly to the causes of the developmental increase in rate of SB, the results of this study appear inconsistent with a cross-sectional study that showed a positive correlation between rate of SB and eye surface area for infants between birth and one year. It is possible that the positive correlation between eye surface area and SB rate is expected because SB rate increases along with eye surface area in human maturation. Although a role for tear film thickness in explaining the developmental increase in rate of SB has not been ruled out, if it were true, it would mean that the mechanisms driving developmental change are different from those explaining the wide individual differences at a given age (apparently not eye surface area or tear film thickness). This issue of the potential causal relationship between rate of SB and tear film thickness and quality would best be addressed using a longitudinal design in which direct measures of the tear film are used.

Despite progress in elucidating mechanisms of SB, major questions remain about the source(s) of individual differences and the cause(s) of developmental change. Clearly, eye surface features such as the precorneal tear film have a unique and essential role in regulating SB throughout the lifespan. Recent work, however, has sought to more fully explain the respective roles of peripheral and central nervous system factors. To date, no comprehensive model has been offered that links explanations of individual differences, developmental change, and transient changes in the rate of SB.
Understanding the mechanisms and development of SB has potential to expand our understanding of (a) normative development with respect to eye movement and features of the eye surface, (b) the interaction of peripheral and central factors in maintaining a healthy eye surface, and (c) the possibility that SB could serve as an index to central nervous system function early in ontogeny. To the extent that SB rate or timing reflects central mechanisms, it may be useful in understanding early neurological development and may also be useful diagnostically.43

ACKNOWLEDGMENTS

Contributions by the parents, infants, and many student assistants are greatly appreciated.

This work was supported by National Eye Institute, National Institute of Health EY016238 (to LFB).

Preliminary results from some analyses were presented at the International Conference on Infant Studies, Vancouver, BC, Canada in 2008. Received August 12, 2009; accepted December 19, 2009.

REFERENCES

46. Elsworthy JD, Manning KA, Pellegrini JJ, Basso MA, Powers AS, Sibony

Leigh F. Bacher
Department of Psychology
455 Mahar Hall
State University of New York at Oswego
Oswego, New York 13126
e-mail: leigh.bacher@oswego.edu

Optometry and Vision Science, Vol. 87, No. 5, May 2010