Using Dilution Refrigerator Technology to perform experiments on MoS2

Mateusz Zuba, Chen, Yung-Fu,
State University of New York at Oswego

Motivation

The purpose of this research is to interpret how the properties of a 2-dimensional semiconductor can change making it a superconductor at low temperatures. In this case the 2-dimensional semiconductor is Molybdenum Disulphide (MoS2).

Helium

Even at absolute zero Helium does not stand still because of the Heisenberg Uncertainty principle. At this temperature they essentially vibrate. Helium is a noble gas making any force interacting with it extremely weak. However, when you have two helium atoms very close together you get a slight attraction because of the Van der Waals force between them. A He-3 atom attracts a He-4 atom more than an identical He-3 atom.

Dilution Refrigerator

The Dilution Refrigerator (DR) is a cryogenic device capable of cooling temperatures to near absolute zero (10mk). It uses quantum mechanics to achieve temperature below that of liquid helium (approximately 4k).

References

1. Robertson, A.W. et al. , Atomic Structure of Interconnected Few Layer Graphene Domains. ACS Nano 5 (8), 661
2. Huang, P.Y. et al., Grains and grain boundaries in single layer graphene atomic patchwork quilts. Nature 469 (7330), 38
3. Tsen, A.W. et al., Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene. Science 336 (6085), 1143 114
4. Professor Yi-Hsien Lee in Department of Material Science at NTHU, Taiwan. 2013.

Conclusion

Evaporation process was not completely effective. Aluminum layers peeled off, which resulted in a broken circuit. A possible reason for the imperfect circuit may be because the vacuum wasn’t clean. However, with an excellent circuit we can accurately measure the conductive properties of MoS2.

Acknowledgements

I would like to thank Professor Yung-Fu Chen and all the graduate students that participated for their guidance in this research. Thanks to Professor Shashi Kanbur for advising my Global Lab experience. Also, thanks to NSF for supporting the research, and NCU for hosting me.

SEM and Au Evaporation

We layer PMMA(Poly methyl methacrylate) onto the sample. Using a SEM (scanning electron microscope) we etch our design by changing the chemical properties of the areas we want. Once we have that we put the sample into a vacuum chamber where we evaporate Aluminum. Once the Aluminum sticks to the sample we can remove the rest of the PMMA.

KLayout

KLayout is a simple piece of software that allows users to view and create complex chip designs. KLayout is a continuously expanding free program which focuses on functionality. We used this program to design the circuit for testing the MoS2 samples.

Molybdenum Disulphide (MoS2)

Molybdenum Disulphide is a monolayer that when synthesized presents itself in the form of isolated triangles. A sample of MoS2 tends to have a large concentration of isolated triangles towards the center with a smaller concentration towards the outside. MoS2 triangles tend to merged with other triangles as well as be misshapen making it difficult to test.