Introduction

- Very exciting to join in this research program. These 40 days studied in NCU, I basically learned four methods of finding roots of equations. Learned how to use basic MATLAB function and learned how to input MATLAB code. I got to find out the roots of equations with each different methods.

Methods

- Week 2: The Newton Method
- Week 3: The Bisection Method
- Week 4: The False Position Method
- Week 5: The Secant Method

Comparision of Four Methods

The Newton Method
A process for approximating the roots of an equation by replacing the curve representing the equation by its tangent and finding the intersection of the tangent with the x-axis and iterating this process.
The process is repeated as:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

The Bisection Method
The bisection method in mathematics is a root-finding method which repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing.

The False Position Method
The false position method or regula falsi method is a term for problem-solving methods in arithmetic, algebra, and calculus. In simple terms, these methods begin by attempting to evaluate a problem using test ("false") values for the variables, and then adjust the values accordingly.

The Secant Method
Secant Method: An iterative method for finding a root of the nonlinear equation \(f(x) = 0 \). It is given by the formula:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

Example: market equilibrium

The demand equation for the “Tempus” quartz wristwatch is given by

\[p = 50e^{-0.1(x + 1)^2} \]

Where \(x \) is the quantity demanded per week and \(p \) is the unit wholesale price in dollars. National Importers, the supplier of the watches, will make \(x \) units available in the market if the unit wholesale price is

\[p = 10 + 5x^2 \]

Dollars. Find the equilibrium quantity and price

Recording data by Excel

<table>
<thead>
<tr>
<th>The Newton Method</th>
<th>The Bisection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>(iteration)</td>
<td>root</td>
</tr>
<tr>
<td>1</td>
<td>2.41214352</td>
</tr>
<tr>
<td>2</td>
<td>1.73676429</td>
</tr>
<tr>
<td>3</td>
<td>1.88938891</td>
</tr>
<tr>
<td>4</td>
<td>1.88938765</td>
</tr>
<tr>
<td>5</td>
<td>1.88938754</td>
</tr>
</tbody>
</table>

Conclusion

By solving the equation, I got to know different iteration between each one. I recorded data from those four methods. And I found out the best method which is the Newton Method to solve the question.